[1]刘中宪,符瞻远,赵延喜,等.浅埋衬砌隧道-邻近建筑地震动力相互作用IBEM模拟[J].防灾减灾工程学报,2019,39(06):980-989.[doi:10.13409/j.cnki.jdpme.2019.06.014]
 LIU Zhongxian,FU Zhanyuan,ZHAO Yanxi,et al.IBEM Simulation of Seismic Dynamic Interaction between a Lined Tunnel and Adjacent Buildings[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(06):980-989.[doi:10.13409/j.cnki.jdpme.2019.06.014]
点击复制

浅埋衬砌隧道-邻近建筑地震动力相互作用IBEM模拟()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年06期
页码:
980-989
栏目:
论文
出版日期:
2019-12-31

文章信息/Info

Title:
IBEM Simulation of Seismic Dynamic Interaction between a Lined Tunnel and Adjacent Buildings
文章编号:
1672-2132(2019)06-0980-10
作者:
刘中宪1符瞻远1赵延喜2孙帅杰1
(1.天津城建大学,天津市土木建筑结构防护与加固重点实验室,天津 300384; 2.南京建筑工程学院,江苏 南京 211167)
Author(s):
LIU Zhongxian1 FU Zhanyuan1 ZHAO Yanxi2 SUN Shuaijie1
(1.Tianjin Key Laboratory of Civil Structure Protection and Reinforcing, Tianjin Chengjian University, Tianjin 300384, China; 2.Nanjing Institute of Architectural Engineering, Nanjing 211167, China)
关键词:
间接边界元 衬砌隧道 SV波 平面波散射 动应力集中
Keywords:
indirect boundary element method lined tunnel building SV waves scattering of plane waves dynamic stress
分类号:
U451
DOI:
10.13409/j.cnki.jdpme.2019.06.014
文献标志码:
A
摘要:
采用高精度间接边界元方法(IBEM)考察地震波入射下隧道-邻近建筑物二维地震动力相互作用的规律。结果表明:建筑物与邻近隧道存在着明显的相互作用,整体动力反应规律取决于隧道,建筑物之间的空间位置关系、隧道埋深、入射波的频率和角度等因素。隧道位于建筑物正下方时,刚性衬砌隧道(相对围岩)对上部结构主要表现为隔震效应; 隧道位于建筑物两侧时,隧道对建筑顶部位移有明显放大效应,最大可放大约40%。同时隧道应力也明显增大,最大可放大约43%。因此实际中需根据隧道-建筑物的空间位置关系,适当调整衬砌隧道与沿线建筑物的抗震设防水平。
Abstract:
A high-precision indirect boundary element method(IBEM)is adopted to investigate the seismic response characteristics and the interaction laws between a tunnel and its adjacent buildings under seismic wave incidence. The results show that there is a distinct interaction between the buildings and the adjacent subway tunnel. The whole dynamic response depends on the spatial location of tunnels and buildings, the buried depth of tunnel, the frequency and the angle of incident wave, etc. The isolation effect is obvious when the rigid lined tunnel is just below the building. The displacement at the ground surface and the top of the building amplifies obviously when the tunnel is located on either side of the building, and the maximum amplification can reach 40%. Moreover, the stress in the tunnel lining also amplifies when the tunnel is located at either side of the building, and the maximum amplification is about 43%. In practice, it is necessary to adjust the seismic fortification levels of lined tunnels and the buildings along the tunnels according to their spatial location.

参考文献/References:

[1] 梁建文, 纪晓东, Vincent W Lee. 地下圆形衬砌隧道对沿线地震动的影响(II):数值结果[J]. 岩土力学, 2005, 26(5): 687-692. Liang J W, Ji X D, Lee V W. On the effects of an underground lined tunnel on ground motion(II):numerical results[J]. Rock and Soil Mechanics, 2005, 26(5): 687-692.(in Chinese)
[2] 梁建文, 张 浩, Vincent W Lee. 地下洞室群对地面运动的影响[J]. 土木工程学报, 2005, 38(2):106-113. Liang J W, Zhang H, Lee V W. Effect of underground group cavities on ground surface motion[J]. China Civil Engineering Journal, 2005, 38(2):106-113.(in Chinese)
[3] Gao Y, Dai D, Zhang N, et al. Scattering of plane and cylindrical SH waves by a horseshoe shaped cavity[J]. Journal of Earthquake & Tsunami, 2016, 11(2): 1650011.
[4] Alielahi H, Kamalian M, Adampira M. Seismic ground amplification by unlined tunnels subjected to vertically propagating SV and P waves using BEM[J]. Soil Dynamics & Earthquake Engineering, 2015, 71(1):63-79.
[5] 巴振宁,安东辉,梁建文.场地动力特性对衬砌隧道地震反应的影响[J].防灾减灾工程学报,2018,38(6):918-926. Ba Zh N, An D H, Liang J W. Effects of site resonant characteristics on the seismic response of lined tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018,38(6):918-926.(in Chinese)
[6] Liu Q, Wang R. Dynamic response of twin closely-spaced circular tunnels to harmonic plane waves in a full space[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2012, 32(6):212-220.
[7] 刘中宪, 梁建文, 张 贺. 弹性半空间中衬砌洞室对平面P波和SV波的散射(Ⅱ)——数值结果[J]. 自然灾害学报, 2010, 19(4):77-88. Liu Zh X, Liang J W, Zhang H. Scattering of plane P and SV waves by a lined tunnel in elastic half space(Ⅱ):numerical results[J]. Journal of Natureal Disasiers, 2010, 19(4):77-88.(in Chinese)
[8] 赵嘉喜, 齐 辉, 杨在林. 含有部分脱胶的浅埋圆夹杂对SH波的散射[J]. 岩土力学, 2009, 30(5):1 297-1 302. Zhao J X, Qi H, Yang Z L. Scattering of SH-waves by a shallow buried cylindrical inclusion with a partially debonded curve in half space[J]. Rock and Soil Mechanics, 2009, 30(5):1 297-1 302.(in Chinese)
[9] 王贵君,张 岭,刘存宽,等.地震作用下含泥岩夹层盐岩储气库的动态响应[J].防灾减灾工程学报,2018,38(4):642-648. Wang G J, Zhang L, Liu C K, et al. Dynamic response of gas storage cavern in bedded salt rock to earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(4):642-648.(in Chinese)
[10] 陈国兴, 庄海洋, 徐 烨. 软弱地基浅埋隧洞对场地设计地震动的影响[J]. 岩土工程学报, 2004, 26(6):739-744. Chen G X, Zhuang H Y, Xu Y. A study on influence of excavated shallow tunnel on design parameters of ground motion in the soft site[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6):739-744.(in Chinese)
[11] 张逸静,陈 甦,王占生.城市轨道交通引起的地面振动传播研究[J].防灾减灾工程学报,2017,37(3):388-395. Zhang Y J, Chen S, Wang Zh Sh. The study of the spread of ground vibration caused by urban rail transit[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(3):388-395.(in Chinese)
[12] Pitilakis K, Tsinidis G, Leanza A, et al. Seismic behaviour of circular tunnels accounting for above ground structures interaction effects[J]. Soil Dynamics and Earthquake Engineering, 2014, 67: 1-15.
[13] 王国波, 王亚西, 陈 斌,等. 隧道-土体-地表结构相互作用体系地震响应影响因素分析[J]. 岩石力学与工程学报, 2015, 34(6):1 276-1 287. Wang G B, Wang Y X, Chen B, et al. Analysis of factors influencing seismic responses of tunnel-soil-ground structural system[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1 276-1 287.(in Chinese)
[14] 王国波, 马险峰, 杨林德. 软土地铁车站结构及隧道的三维地震响应分析[J]. 岩土力学, 2009, 30(8):2 523-2 528. Wang G B, Ma X F,Yang L D. Three-dimensional seismic response analysis of metro station structures and tunnels in soft soil[J]. Rock and Soil Mechanics, 2009, 30(8):2 523-2 528.(in Chinese)
[15] Wang G, Yuan M, Miao Y, et al. Experimental study on seismic response of underground tunnel-soil-surface structure interaction system[J]. Tunnelling & Underground Space Technology, 2018, 76:145-159.
[16] 陈健云, 何 伟, 徐 强,等. 地下结构对场地和地表建筑地震响应影响分析[J]. 大连理工大学学报, 2012, 52(3):393-398. Chen J Y, He W, Xu Q, et al. Analysis for effect of underground structure on seismic response of ground and adajacent surface buildings[J]. Journal of Dalian University of Technology, 2012, 52(3):393-398.(in Chinese)
[17] Liu Z X, Liu L. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space[J]. Earthquake Science, 2015, 28(1): 71-86.
[18] Rjoub Y S A. Soil structure interaction in poroelastic soils[D]. US: University of Southern California, 2007:111-113.

备注/Memo

备注/Memo:
收稿日期:2018-04-08; 修回日期:2018-06-07基金项目:国家自然科学基金项目(51678390)、天津市自然科学基金重点项目(18ZXAQSF00110)、天津市科技支撑计划项目(17YFZCSF01140)资助作者简介:刘中宪(1982-),男,教授,博士。主要从事地震工程与工程振动方面的研究。Email:zhongxian1212@163.com
更新日期/Last Update: 2019-12-25