[1]林 辉,吴珺华,李梦云,等.斥水剂作用下土壤物理性质变化规律试验研究[J].防灾减灾工程学报,2019,39(06):966-9711022.[doi:10.13409/j.cnki.jdpme.2019.06.012]
 LIN Hui,WU Junhua,LI Mengyun,et al.Experimental Study on the Change of Soil Physical Properties under the Action of Water Repellent Agent[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(06):966-9711022.[doi:10.13409/j.cnki.jdpme.2019.06.012]





Experimental Study on the Change of Soil Physical Properties under the Action of Water Repellent Agent
林 辉 吴珺华 李梦云 王茂胜 刘嘉铭 敖炜超
(南昌航空大学土木建筑学院,江西 南昌 330063)
LIN Hui WU Junhua LI Mengyun WANG Maosheng LIU Jiaming AO Weichao
(College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China)
十八烷基伯胺 斥水性 液塑限 含水率 干密度
octadecylamine water repellency liquid and plastic limit water content drydensity
采用十八烷基伯胺(OCT)对亲水土壤斥水化,进行斥水土壤的临界含水率试验、界限含水率试验以及击实试验。通过试验结果分析OCT对土壤物理性质的影响关系,获得OCT质量分数与土壤初始含水率、液限、塑限、最优含水率、最大干密度的关系。结果表明:亲水及斥水性土壤为高液限黏土,土壤状态为坚硬; 随着斥水土壤初始含水率的增加,土壤斥水等级出现先增后减的变化规律; 斥水土壤液限随着OCT质量分数的增大而减小,塑限随着OCT质量分数的增大而增大; 最大干密度及最优含水率随着土壤斥水等级增大而增大,增幅平均为5.7%。上述研究成果可为斥水土壤工程应用提供试验基础。
The octadecylamine(OCT)was used to re-hydrate the hydrophilic soil. The critical moisture content tests, boundary moisture content tests and compaction tests of the water-repellent soil were carried out. The relationships of OCT mass fraction to soil initial water content, liquid limit, plastic limit, critical water content and maximum dry density were obtained by analyzing the effect of OCT on soil physical properties. The results showed that both hydrophilic soil and water repellent soil had a high liquid limit, and they were classified as hard soil. The repelling level of water-repellent soil increased first and then decreased with the increase of initial water content. The water limit of the water-repellent soil decreased with the increase of the OCT mass fraction, while the plastic limit increased with the increase of the OCT mass fraction. The maximum dry density and critical moisture content increased with the increase of soil water repellent level, and the average increment was 5.7%. These results can provide a test basis for the application of water-repellent soil in engineering.


[1] 李广信. 高等土力学[M]. 北京:清华大学出版社,2004. Li G X. Advanced soil mechanics[M]. Bejing: Tsinghua University Press, 2004.(in Chinese)
[2] 李 毅,商艳玲,李振华,等. 土壤斥水性研究进展[J]. 农业机械学报,2012,43(1):68-75. Li Y, Shang Y L, Li Zh H, et al. Advance of study on soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 68-75.(in Chinese)
[3] Bayliss J S. Observations on marasmius oreades and clitocybegigantea as parasitic fungi causing fairy rings[J]. Journal of Economic Biology, 1911(6): 111-132.
[4] VoelknerA, Holthusen D, Ellerbror H, et al. Quantity of hydrophobic functional CH-groups-decisive for soil water repellency caused by digestate amendment[J]. International Agrophysics, 2015, 29: 247-255.
[5] Keesstra S, Wittenberg L, MaroulisJ, et al. The influence of fire history, plant species and post-fire managementon soil water repellency in a mediterranean catchment: the mount carmel range, Israel[J]. Catena, 2017, 149: 857-866.
[6] Heydari M, Rostamy A, Najafi F, et al. Effect on fire severity on physical and biochemical soil properties in Zagros forests in Iran[J]. Journal of Forest Research, 2017, 28(1): 95-104.
[7] Tillman R W, Scotter D R, Wallis M G, et al. Water repellency and its measurement using intrinsic sorptivity[J]. Australian Journal of Soil Research, 1989,27: 637-644.
[8] Doerr S H, Shakesby R A, Walsh R P D. Soil water repellency: its causes, characteristic sand hydro geomorphological significance[J].Earth-Science Reviews, 2000, 51(1-4): 33-65.
[9] DeBono L F. The effect of hydrophobic substances on water movement in soil during infiltration[J]. Soil Science Society of Amercia, 1971, 35(2): 340-343.
[10] Hallett PD, Licher L, Kodesova R, et al. A brief overview of the causes, impacts and amelioration of soil water repellency reviews[J]. Soil and Water Research, 2008,3(1): S21-S29.
[11] Cawson J G, Nyman P, Smith H G, et al. How soil temperatures during prescribed bumming affect soil water repellency, infiltration and erosion[J]. Geoderma, 2016, 278: 12-22.
[12] Doerr S H, Ferreira A J D, WalshR P D, et al. Soil water repellency as a potential parameter in rainfall-runoff modeling: experimental evidence at point to catchment scales from portugal[J]. Hydrological Process, 2003, 17(2): 363-377.
[13] Bauters T W J, Dicarlo D A, Steenhuis T S, et al. Preferential flow in water-repellent of civil engineers: Geotence socience [J]. Society of America Journal, 1998, 62(5): 1 185-1 190.
[14] De Jonge L W, Jacobeen O H, Moldrup P. Soil water repellency:effects of water content, temperature, and particle size[J]. Soil Science Society of Amercia, 1999, 63(3): 437-442.
[15] Rye C F, Smettem KR J. The effect of water repellent soil surface layers on preferential flow andbare soil evaporation[J]. Geoderma, 2017, 289: 142-149.
[16] 杨邦杰. 土壤斥水性引起的土地退化、调查方法与改良措施研究[J]. 环境科学,1994(4): 88-90. Yang B J. Study on land degradation caused by soil water repellency, investigationmethods and improvement measures[J]. Environmental Science, 1994(4): 88-90.(in Chinese)
[17] 陈俊英,刘 畅,张 林,等. 斥水程度对脱水土壤水分特征曲线的影响[J]. 农业工程学报, 2017,33(21): 188-193. Chen J Y, Liu Ch, Zhang L, et al. Impact of repellent levels on drainage soil water characteristic curve[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 188-193.(in Chinese)
[18] 商艳玲. 再生水灌溉对土壤水盐运移及斥水性的影响[D]. 西安:西北农林科技大学,2013. Shang Y L. Effect on waterand salt transport and water repellency of soil under reclaimed water irrigation[D]. Xi’an: Northwest A&F University, 2013.(in Chinese)
[19] 杨昊天,刘立超,高艳红,等. 腾格里沙漠沙丘固定后土壤的斥水性特征研究[J]. 中国沙漠,2012,32(3):674-682. Yang H T, Liu L Ch, Gao Y H, et al. Study on the water repellencycharacteristics of soil after sand dunes in Tengger Desert[J]. Journal of Desert Research, 2012, 32(3): 674-682.(in Chinese)
[20] 孙棋棋,刘前进,于兴修,等.沂蒙山区桃园和玉米地棕壤斥水性空间分布及影响因素[J]. 陕西师范大学学报(自然科学版),2013,41(6): 80-87. Sun Q Q, Liu Q J, Yu X X, et al. Spatial distributionand influencing factors of brown soil water repellency between peach orchard corn field in Yimeng mountainous area[J]. Journal of Shanxi Normal University(Natural Science Edition), 2013, 41(6): 80-87.(in Chinese)
[21] 郭成久,陈 乐,肖 波,等. 黄土高原苔藓结皮斥水性及其对火烧时间的响应[J]. 沈阳农业大学学报,2016,47(2): 212-217. Guo Ch J, Chen L, Xiao B, et al. Mosquito water repellency and its response to fire time in the Loess Plateau[J]. Journal of Shenyang Agricultural University, 2016, 47(2): 212-217.(in Chinese)
[22] 李雄威,孔令伟,郭爱国. 膨胀土堑坡雨水入渗速率的影响因素与相关性分析[J]. 岩土力学,2009,30(5): 1 291-1 296. Li X W, Kong L W, Guo A G. Effects and correlation analysis of infiltration velocity of expansive soil cut slope[J]. Rock and Soil Mechanics, 2009, 30(5): 1 291-1 296.(in Chinese)
[23] 陈建斌,孔令伟,赵艳林,等.蒸发蒸腾作用下非饱和土的吸力和变形影响因素分析[J]. 岩土力学,2007,28(9): 1 767-1 772,1 778. Chen J B, Kong L W, Zhao Y L, et al. On influence factors of suction anddeformation of unsaturated soil under evaporation and transpiration effect[J].Rock and Soil Mechanics, 2007, 28(9): 1 767-1 772,1 778.(in Chinese)
[24] TollD G. Rainfall induced landslides in Singapore[J]. Institution of Civil Engineers: Geotechnical Engineering, 2001, 149(4): 211-216.
[25] 刘 洋,周 健,王国强. 膨胀土基坑边坡降雨入渗的一维数值模拟[J].同济大学学报(自然科学版),2005,33(2): 158-161. Liu Y, Zhou J, Wang G Q. One-dimensional numerical simulation of rainfall infiltration in expansive soil foundation pit slope[J]. Journal of Tongji University(Natural Science), 2005, 33(2): 158-161.(in Chinese)
[26] 杨 松,龚爱民,吴珺华,等. 接触角对非饱和土中基质吸力的影响[J]. 岩土力学, 2015,36(3): 674-678. Yang S, Gong A M, Wu J H, et al. Effect ofcontact angle on matric suction of unsaturated soil[J]. Rock and Soil Mechanics, 2015, 36(3): 674-678.(in Chinese)
[27] 罗 逸,郑 家,郭稚弧,等. 膨胀土化学改性对土体力学行为的影响[J]. 水文地质工程地质,1995,22(6): 19-20,35. Luo Y,Zheng J, Guo Zh H, et al. Influence of chemical modification of expansive soil onsoil mechanical behavior[J]. Hydrogeology and Engineering Geology, 1995, 22(6): 19-20,35.(in Chinese)
[28] Lehresch G A, Sojka R E, Koehn A C. Surfactanteffects on soil aggregate tensile strength[J]. Geoderma, 2012, 189(6): 199-206.(in Chinese)
[29] 王保田,任 骜,张海福,等. 使用CTMAB改良剂改良天然膨胀土的试验研究[J]. 岩土力学,2009,30(增2): 39-42. Wang B T, Ren W, Zhang H F, etal. Experimental research on stabilizing expansive soil by CTMAB[J]. Rock andSoil Mechanics, 2009, 30(Sup 2): 39-42.(in Chinese)
[30] Franco C M M, Tate M E, Oades J M. Studies on non-wetting sands: I. the role of intrinsic particulateorganic matter in the development of water repellency in non-wettingsands[J]. Australian Journal of Soil Research, 1995, 33(2): 253-263.
[31] Woudt B D V.Particle coatings affecting the wettability of soils[J] Journal ofGeophysical Research Atmospheres, 1959, 64(2): 263-267.
[32] Watson C L, Letey J. Indices for characterizing soil water repellency based upon contact angle-surface tension relationships[J]. Soil Science Society of America, 1970, 34(6): 841-844.
[33] 吴延磊,李子忠,龚元石. 两种常用方法测定土壤斥水性结果的相关性研究[J]. 农业工程学报,2007,23(7): 8-13. Wu Y L, Li Z Zh, Gong Y Sh. Correlation of soil water repellency measurements from two typical methods[J]. Transactions ofthe Chinese Society of Agricultural Engineering, 2007, 23(7): 8-13.(in Chinese)
[34] 土工试验方法标准: GB/T50123—1999[S]. 北京: 中国计划出版社, 1999. Standard for geotechnical testing method: GB/T50123—1999[S]. Beijing: China Planning Press, 1999.
[35] 黄兴安. 公路与城市道路设计手册[M]. 北京:中国建筑工业出版社,2005. Huang X A, Highway and urban road design manual[M]. Beijing: China Architecture & Building Press, 2005.
[36] 杨 松,吴珺华,黄剑峰,等. 接触角对张力计及轴平移技术测量非饱和土吸力的影响[J]. 岩石力学与工程学报,2016,35(增1):3 331-3 336. Yang S, Wu J H, Huang J F, et al. Effects of contact angle on suction measurement with tensiometers and axis-translation technique in unsaturated soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 3 331-3 336.(in Chinese)


收稿日期:2018-12-03; 修回日期:2018-12-25基金项目:国家自然科学基金项目(51869013,41867038)、江西省自然科学基金项目(20181BAB216033)、江西省教育厅科技项目(GJJ180530)、南昌航空大学研究生创新基金项目(YC2018070)资助作者简介:林 辉(1993-),男,硕士研究生。主要从事非饱和土基本性质研究。Email:345583603@qq.com通讯作者:吴珺华(1985-),男,副教授,硕导,博士。主要从事非饱和土基本性质研究。Email:wjhnchu0791@126.com
更新日期/Last Update: 2019-12-25