[1]金丹丹,肖金阳,李传勋.考虑非达西渗流的天然结构性软土大应变非线性固结[J].防灾减灾工程学报,2019,39(06):888-897.[doi:10.13409/j.cnki.jdpme.2019.06.002]
 JIN Dandan,XIAO Jinyang,LI Chuanxun.Analysis on Nonlinear Large-strain Consolidation of Structured Soft Clay by Considering Non-Darcy Flow[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(06):888-897.[doi:10.13409/j.cnki.jdpme.2019.06.002]
点击复制

考虑非达西渗流的天然结构性软土大应变非线性固结()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年06期
页码:
888-897
栏目:
论文
出版日期:
2019-12-31

文章信息/Info

Title:
Analysis on Nonlinear Large-strain Consolidation of Structured Soft Clay by Considering Non-Darcy Flow
文章编号:
1672-2132(2019)06-0888-10
作者:
金丹丹 肖金阳 李传勋
(江苏大学土木工程与力学学院, 江苏 镇江 212013)
Author(s):
JIN Dandan XIAO Jinyang LI Chuanxun
(Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China)
关键词:
非达西渗流 结构性软土 非线性 大应变固结
Keywords:
non-Darcy flow structured soft clay nonlinear large-strain consolidation
分类号:
TU433
DOI:
10.13409/j.cnki.jdpme.2019.06.002
文献标志码:
A
摘要:
天然软黏土的结构特性、大应变特性及低水力坡降下软黏土中的非达西渗流已渐被熟知。但同时考虑天然软黏土结构特性和非达西渗流的软黏土大应变固结理论仍鲜有报道。考虑非达西渗流和天然软黏土的结构特性对固结性状的影响,在拉格朗日坐标系中建立变荷载下软土一维大应变固结模型,并获得其有限差分数值解。在此基础上,与非达西定律下不考虑结构特性影响的软黏土大应变固结解对比,分析验证本文解的可靠性。最后,着重分析了非达西渗流、天然软土结构特性及外荷载对软黏土大、小应变固结性状影响的特征。结果表明:非达西渗流下土的固结速率相对于达西渗流延后,且非达西渗流参数越大固结速率延缓越明显,但其对土层最终沉降值无影响。相同非达西渗流参数下大应变固结速率快于小应变固结速率,但非达西渗流参数并不影响大、小应变固结速率的差异。当外荷载小于天然软黏土结构屈服应力时,土层在荷载作用下应变值较小,大、小应变固结速率的差异可忽略; 随着外荷载的增加或结构屈服压力的减小,土层应变值逐渐增大,大、小应变固结速率的差异越明显。
Abstract:
Structural characteristics,large strain,and non-Darcy flow characteristics under low hydraulic gradient of natural soft clay have been gradually understood. Theory research considering both structural characteristics of natural soft clay and non-Darcy flow was rarely reported. By taking the influence of non-Darcy flow and the structural characteristics of natural soft clay into account, an one-dimensional large strain consolidation model under various loads was established in the Lagrange coordinate system, and the corresponding finite difference numerical solution was obtained. Meanwhile, the results were compared with the large-strain consolidation solution without considering the influence of structural characteristics. The reliability of the solution in this paper was analyzed and verified. Besides, the influences of structural characteristics of natural soft clay, non-Darcy flow characteristic, and external loads on the consolidation behavior were emphatically analyzed. Results show that the consolidation rate considering non-Darcy flow is slower than that without considering Darcy flow. This consolidation delay phenomenon becomes more obvious with the growth of non-Darcy flow parameters. However, the final settlement value is nearly the same. When under the same non-Darcy flow parameters, large-strain consolidation rate is greater than small-strain consolidation rate, while there is no effect on consolidation rate difference between large strain and small strain. In addition, the soil strain is small when the external load is less than the yield stress of natural soft clay, and the corresponding consolidation rate difference between large strain and small strain can be negligible. With the increase of the external load or the decrease of the yield stress, the soil strain increases gradually, and the difference between consolidation rate of large strain and small strain becomes obvious.

参考文献/References:

[1] 王立忠, 丁 利, 陈云敏, 等. 结构性软土压缩特性研究[J]. 土木工程学报, 2004,37(4):46-53. Wang L Zh, Ding L, Chen Y M, et al. Study on compressibility of structured soft soil[J].China Civil Engineering Journal, 2004,37(4):46-53.(in Chinese)
[2] Zeng L L, HongZ S, Cai Y Q, et al. Change of hydraulic conductivity during compression of undisturbed and remolded clays[J]. Applied Clay Science, 2011, 51(1/2): 86-93.
[3] Hu A F, Xia C Q, Cui J, et al. Nonlinear consolidation analysis of natural structured clays under time-dependent loading[J]. International Journal of Geomechanics, 2018,18(2):16.
[4] Burland J B. On the compressibility and shear strength of natural clay, rankine lecture[J]. Géotechnique, 1990,40(3):329-378.
[5] Chai J C, Miura N, Zhu H H, et al. Compressionand consolidation characteristics of structured natural clay[J]. Canadian Geotechnical Journal, 2004, 41(6):1 250-1 258.
[6] Mataic I, Wang D, Korkiala-Tanttu L. Effect ofdestructuration on the compressibility of perni? clay in incremental loading oedometer tests[J]. International Journal of Geomechanics, 2016,16(1):04015016.
[7] Xie K H, Xia C Q, An R, et al. A study on theone-dimensional consolidation of double-layered structured soils[J]. Computers and Geotechnics, 2016,73:189-198.
[8] Zeng L L, Hong Z S, CuiY J, et al. A compression reference of soil structure evaluation with reconstituted clays at different initial water contents[J]. Marine Georesources & Geotechnology, 2017,36(7):759-767.
[9] Hong Z S, Zeng L L, Cui Y J, etal. Compression behaviour of natural and reconstituted clays[J]. Géotechnique,2012,62(4): 291-301.
[10] 王 军, 陈云敏. 均质结构性软土地基的一维固结解析解[J]. 水利学报, 2003(3):19-24. Wang J, Chen Y M. Analytical solution to 1-D consolidation of uniform structured soft foundation[J]. Shuili Xuebao,2003(3):19-24.(in Chinese)
[11] 曹宇春, 陈云敏, 黄茂松. 任意施工荷载作用下天然结构性软粘土的一维非线性固结分析[J]. 岩土工程学报, 2006,28(5):569-574. Cao Y Ch, Chen Y M, Huang M S. One-dimensional nonlinear consolidation analysis of structured natural soft clay subjected to arbitrarily time-dependentconstruction loading[J]. Chinese Journal of Geotechnical Engineering, 2006,28(5):569-574.(in Chinese)
[12] Chen Y M, Tang X W, Ning J. Consolidation of sensitive clay with vertical drain[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2007,31(15):1 695-1 713.
[13] Xie KH, Xia C Q, An R, et al. A study on the one-dimensional consolidation ofdouble-layered structured soils[J]. Computers & Geotechnics, 2016,73:189-198.
[14] Jr W G W. Performance of embankments constructed over peat[J]. Journal of the Soil Mechanics & Foundations Division, 1969,95:53-76.
[15] Cargill K W. Prediction of consolidation of very soft soil[J]. Journal of Geotechnical Engineering, 1984,110(6):775-795.
[16] Mikasa M. The consolidation of soft clay-a new consolidation theory and its application[J]. Civil Engineering in Japan, 1965(1): 21-26.
[17] Hansbo S. Consolidation of clay with special reference to influence of vertical sand drains:a study made in connection with full-scale investigations at Ska-Edeby[D]. Stockholm: Swedish Geotechnical Institute, 1960.
[18] Swartzendruber D. Modification of darcy’s law for the flow of water in soils[J]. Soil Science, 1962, 93(1): 22-29.
[19] Hansbo S. Deviation for Darcy’s law observed in one-dimensional consolidation[J]. Géotechnique, 2003, 53(6):601-605.
[20] 齐 添, 谢康和, 胡安峰, 等. 萧山黏土非达西渗流性状的试验研究[J]. 浙江大学学报(工学版), 2007,41(6):1 023-1 028. Qi T, Xie K H, Hu A F, et al. Laboratorial study on non-Darcy seepage in Xiaoshan clay[J]. Journal of Zhejiang University(Engineering Science), 2007,41(6):1 023-1 028.(in Chinese)
[21] Indraratna B, Zhong R, Fox P J, et al. Large-strain vacuum-assisted consolidation with non-darcian radial flow incorporating varying permeability and compressibility[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1):04016088.
[22] Li C X, Wang C J, Lu M M, et al. One-dimensional large-strain consolidation of soft clay with non-Darcian flow and nonlinear compression and permeability of soil[J]. Journal ofCentral South University, 2017,24(4):967-976.
[23] Wu W, Zong M, El Naggar M H, et al. Analytical solution for one-dimensional consolidation of double-layered soil with exponentially time-growing drainage boundary[J]. International Journal of Distributed Sensor Networks, 2018,14(10):1550147718806716.
[24] Yang S, Wang L, Zhang S. Conformable derivative: application to non-darcian flow in low-permeability porous media[J]. Applied Mathematics Letters, 2018,79:105-110.
[25] 李传勋, 谢康和. 考虑非达西渗流和变荷载影响的软土大变形固结分析[J]. 岩土工程学报, 2015,37(6):1 002-1 009. Li Ch X, Xie K H. Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load[J].Chinese Journal of Geotechnical Engineering, 2015,37(6):1 002-1 009.(in Chinese)
[26] 高彦斌, 李 赫, 张阿晋. 结构性对上海软土次压缩特性的影响[J]. 上海国土资源, 2011, 32(4): 73-77. Gao Y B, Li H, Zhang A J. Influence of soil structure on secondary compression behavior of Shanghai soft clay[J]. Shanghai Land and Resources, 2011,32(4):73-77.(in Chinese)
[27] Horpibulsuk S, Shibuya S, Fuenkajorn K, et al. Assessment of engineering properties of Bangkok clay[J]. Canadian Geotechnical Journal, 2007,44(2):173-187.
[28] Gibson R E, England G L, Hussey M J L. The Theory of one-dimensional consolidation of saturated clays[J]. Géotechnique, 1967,17(3):261-273.
[29] Xie K H, Leo C J. Analytical solutions of one-dimensionallarge strain consolidation of saturated and homogeneous clays[J]. Computers and Geotechnics, 2004, 31(4): 301-314.

备注/Memo

备注/Memo:
收稿日期:2019-03-12; 修回日期:2019-05-07基金项目:国家自然科学基金项目(51708256,51878320)资助作者简介:金丹丹(1987-),女,讲师,博士。主要从事土动力学方面的研究。Email:jddnjut@163.com
更新日期/Last Update: 2019-12-25