[1]徐 健,任连伟,马 艳,等.冬季工况下微型钢管桩热力响应特性数值分析[J].防灾减灾工程学报,2019,39(04):665-672690.[doi:10.13409/j.cnki.jdpme.2019.04.018]
 XU Jian,REN Lianwei,MA Yan,et al.Numerical Analysis on Thermodynamic Response Characteristics of Micro Steel Piles under Winter Conditions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):665-672690.[doi:10.13409/j.cnki.jdpme.2019.04.018]
点击复制

冬季工况下微型钢管桩热力响应特性数值分析()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
665-672690
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Numerical Analysis on Thermodynamic Response Characteristics of Micro Steel Piles under Winter Conditions
文章编号:
1672-2132(2019)04-0665-08
作者:
徐 健1 任连伟1 马 艳2 任军洋1
(1. 河南理工大学土木工程学院, 河南 焦作 454000; 2. 周口师范学院基建处,河南 周口 466000)
Author(s):
XU Jian1 REN Lianwei1 MA Yan2 REN Junyang1
(1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2. Infrastructare Office of Zhoukou Normal University, Zhoukou 466000, China)
关键词:
能量桩 微型钢管桩 数值模拟 热力响应
Keywords:
energy piles micro steel piles numerical simulation thermodynamic response
分类号:
TU443
DOI:
10.13409/j.cnki.jdpme.2019.04.018
文献标志码:
A
摘要:
结合微型钢管桩热力响应特性现场试验,基于数值模拟方法,研究了冬季工况下流速、布桩形式等因素对微型钢管能量桩热力响应特性的影响规律。研究结果表明:换热效率增幅随流速的增加成非线性增长且最终趋于稳定,就本项目微型钢管桩而言,最佳流速为0.51~0.77 m/s; 桩身轴向最大附加拉应力约为桩身混凝土抗拉强度设计值的53.8%,不会导致桩体破坏; 桩身轴向最大附加拉应力与温度改变之间的关系约为σT=110ΔT。
Abstract:
There is less research on the thermodynamic response characteristics of energy piles under winter conditions at present. On the basis of the field tests on thermodynamic characteristics of micro steel energy piles, a numerical simulation study was carried out to analyze the effects of flow rates and pile layouts on the thermodynamic response characteristics of micro steel energy piles in winter conditions. The results show that: the growth rate of heat transfer efficiency increases nonlinearly with increasing flow rate and eventually tends to be stable. For the micro steel piles in this project, the optimum flow rate is between 0.51 m/s and 0.77m/s. Under the conditions of this study, the axial maximum additional tensile stress of the pile at the five flow rates is about 53.8% of the design value of the pile concrete tensile strength, which cannot cause the break of pile. The relationship between the pile axial maximum additional tensile stress and the temperature increment of the pile can be expressed as σT=110ΔT.

参考文献/References:

[1] 黄 旭, 孔纲强, 刘汉龙, 等. 夏季制冷循环下PCC能量桩负摩阻力特性研究[J]. 防灾减灾工程学报, 2017, 37(4): 511-517. Huang X, Kong G Q, Liu H L, et al. Negative skin friction behavior of PCC energy pile under heating cycle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 511-517.(in Chinese)
[2] 费 康, 洪 伟, 钱 建, 等. 循环温度作用下砂土地基能量桩的长期工作特性[J]. 防灾减灾工程学报, 2017, 37(4): 525-531. Fei K, Hong W, Qian J, et al. Long-term performance of energy piles subjected to cyclic thermal loading in sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 525-531.(in Chinese)
[3] 杨 涛, 花永盛, 刘律智. 悬浮能量桩热-力学基本特性的数值模拟[J]. 防灾减灾工程学报, 2017, 37(4): 518-524,597. Yang T, Hua Y Sh, Liu L Zh. Numerical simulation of basic thermal-mechanical behavior of a floating energy pile[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 518-524,597.(in Chinese)
[4] Kong G Q, Wu D, Liu H L, et al. Performance of a geothermal energy deicing system for bridge deck using a pile heat exchanger[J]. International Journal of Energy Research, 2019, 43(1): 596-603.
[5] Bourne-Webb P J, Amatya B, Soga K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248.
[6] You S, Cheng X H, Guo H, et al. Experimental study on structural response of CFG energy piles[J]. Applied Thermal Engineering, 2016, 96: 640-651.
[7] Chen Y H, Xu J, Li H, et al. Performance of a prestressed concrete pipe energy pile during heating and cooling[J]. Journal of Performance of Constructed Facilities, 2017, 31(3): 06017001.
[8] Li C H, Kong G Q, Liu H L, et al. Experimental on red clay-concrete interface influenced by cycle temperatures[J]. Canadian Geotechnical Journal, 2019, 56(1): 126-134.
[9] Zhou H, Kong G Q, Liu H L, et al. Similarity solution for cavity expansion in thermoplastic soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(2): 274-294.
[10] Batini N, Loria A F R, Conti P, et al. Energy and geotechnical behaviour of energy piles for different design solutions[J]. Applied Thermal Engineering, 2015, 86: 199-213.
[11] Melis S, Tracy B, Guney O C. Full-scale in-situ tests on energy piles: head and base-restraining effects on the structural behaviour of three energy piles[J]. Geomechanics for Energy and the Environment, 2019, 18: 56-68.
[12] Jeong S, Lim H, Lee J K, et al. Thermally induced mechanical response of energy piles in axially loaded pile groups[J]. Applied Thermal Engineering, 2014, 71(1): 608-615.
[13] Salciarini D, Ronchi F, Cattoni E, et al. Thermomechanical effects induced by energy piles operation in a small piled raft[J]. International Journal of Geomechanics, 2015, 15(2): 04014042.
[14] Loria A F R, Aurélien Vadrot, Laloui L. Analysis of the vertical displacement of energy pile groups[J]. Geomechanics for Energy & the Environment, 2018, 16: 1-14.
[15] You T, Li X T, Cao S L, et al. Soil thermal imbalance of ground source heat pump systems with spiral-coil energy pile groups under seepage conditions and various influential factors[J]. Energy Conversion and Management, 2018, 178: 123-136.
[16] Wong K S, Teh C I. Negative skin friction on piles in layered soil deposits[J]. Journal of Geotechnical Engineering, 1995, 121(6): 457-465.
[17] 史三元, 李 群, 刘德乾. 邯郸市粉质粘土邓肯-张模型参数试验研究[J]. 河北工程大学学报(自然科学版), 2006, 23(2):1-3. Shi S Y, Li Q, Liu D Q. Study on parameters of Duncan -Chang model for Handan silty clay[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2006, 23(2):1-3.(in Chinese)
[18] 李德祥. 多种土体三轴试验的三种非线性本构模型模拟[D]. 重庆:重庆大学, 2015. Li D X. A variety of triaxial test of three kinds of soil nonlinear constitutive model simulation[D]. Chongqing:Chongqing University, 2015.(in Chinese)
[19] 桩基地热能利用技术标准:JGJ/T 438—2018[S]. 北京: 中国建筑工业出版社, 2018. Technical standard for utilization of geothermal energy through piles:JGJ/T 438—2018[S]. Beijing: China Building Industry Press, 2018.(in Chinese)
[20] 混凝土结构设计规范:GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2011. Code for design of concrete structures:GB 50010—2010[S]. Beijing: China Building Industry Press, 2011.(in Chinese)

相似文献/References:

[1]黄旭,孔纲强,刘汉龙,等.夏季制冷循环下PCC能量桩负摩阻力特性研究[J].防灾减灾工程学报,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
 HUANG Xu,KONG Gangqiang,LIU Hanlong,et al.Negative Skin Friction Behavior of PCC EnergyPile under Heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
[2]杨涛,花永盛,刘律智.悬浮能量桩热-力学基本特性的数值模拟[J].防灾减灾工程学报,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
 YANG Tao,HUA Yongsheng,LIU Lyuzhi.Numerical Simulation of Basic Thermo-mechanical Behavior of a Floating Energy Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
[3]费康,洪伟,钱建,等.循环温度作用下砂土地基能量桩的长期工作特性[J].防灾减灾工程学报,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
 FEI Kang,HONG Wei,QIAN Jian,et al.Long-term Performance of Energy Piles Subjected to Cyclic Thermal Loading in Sand[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
[4]郝耀虎,孔纲强,彭怀风,等.桩端约束对桩身热力学特性影响的模拟分析[J].防灾减灾工程学报,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
 HAO Yaohu,KONG Gangqiang,PENG Huaifeng,et al.Analysis of Thermo-mechanical Behavior of Single Pile Influenced by Pile Tip Constraint[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
[5]赵刚,李驰,斯日古楞.温度循环下桩土界面特性及桩侧摩阻力数值模拟[J].防灾减灾工程学报,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
 ZHAO Gang,LI Chi,Siriguleng.Friction Characteristics of Pile-soil Interface under Temperature Cycles and Numerical Simulation of Shaft Resistance[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
[6]罗 喆,胡 彪.基于热力荷载传递原理的能量桩长期响应研究[J].防灾减灾工程学报,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
 LUO Zhe,HU Biao.Long-term Response of Energy Pile based on Thermo- mechanical Load-transfer Principle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
[7]杨 涛,刘律智,花永盛.冷-热循环下能量桩热-力学特性的数值模拟[J].防灾减灾工程学报,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
 YANG Tao,LIU Lyuzhi,HUA Yongsheng.Numerical Simulation of Thermo-mechanical Behavior of Energy Pile Subjected to Cooling-heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
[8]陈 智,高华雨,肖衡林,等.温度荷载作用下灌注型能量桩热力响应 原位试验研究[J].防灾减灾工程学报,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
 CHEN Zhi,GAO Huayu,XIAO Henglin,et al.In-situ Thermo-mechanical Response Test of Perfusion Energy Pile under Temperature Loading[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
[9]闫振国,张正威,杨 军.考虑桩身热容的能量桩传热性能分析[J].防灾减灾工程学报,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
 YAN Zhenguo,ZHANG Zhengwei,YANG Jun.Analysis of Heat Transfer Performance of Energy Pile Considering Heat Capacity of Pile Body[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
[10]张培龙,裴华富,宋怀博,等.基于改进G-函数的能量桩结构可靠性设计[J].防灾减灾工程学报,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
 ZHANG Peilong,PEI Huafu,SONG Huaibo,et al.Reliability Design of Energy Pile Structure based on Improvement of G-functions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]

备注/Memo

备注/Memo:
收稿日期:2019-03-07; 修回日期:2019-04-10 基金项目:国家自然科学基金项目(51778212,U1810203)资助 作者简介:徐 健(1991-),男,硕士研究生。主要从事能量桩技术与应用的研究。Email:JianXuHPU@163.com 通讯作者:马 艳(1981-),女,工程师。主要从事岩土工程地基处理方面的研究。Email:8606636@qq.com
更新日期/Last Update: 2019-09-15