[1]车 平,黄 旭,孔纲强.循环温度荷载下管式能量桩荷载传递机理研究[J].防灾减灾工程学报,2019,39(04):651-657.[doi:10.13409/j.cnki.jdpme.2019.04.016]
 CHE Ping,HUANG Xu,KONG Gangqiang.Thermo-mechanical Properties of Pipe Energy Pile under Cycle Temperature Load[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):651-657.[doi:10.13409/j.cnki.jdpme.2019.04.016]
点击复制

循环温度荷载下管式能量桩荷载传递机理研究()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
651-657
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Thermo-mechanical Properties of Pipe Energy Pile under Cycle Temperature Load
文章编号:
1672-2132(2019)04-0651-07
作者:
车 平1 黄 旭2 孔纲强2
(1.江苏省有色金属华东地质勘查局,江苏 南京 210007; 2.河海大学岩土力学与堤坝工程教育部重点试验室,江苏 南京 210098)
Author(s):
CHE Ping1 HUANG Xu2 KONG Gangqiang2
(1. East China Mineral Exploration and Development Bureau, Nanjing 210007, China; 2. Key Laboratory of Geomechanics and Embankment Engineering, Ministry of Education, Hohai University, Nanjing 210098, China)
关键词:
管式能量桩 承载力 温度循环 热力耦合 模型试验
Keywords:
hollow energy pile bearing capacity temperature cycles thermal-mechanical coupling model test
分类号:
TU43
DOI:
10.13409/j.cnki.jdpme.2019.04.016
文献标志码:
A
摘要:
基于模型试验方法,开展加热(制冷)工作模式下,实心和管式能量桩的热响应测试研究; 分析多次加热/制冷循环作用下两种能量桩的热力耦合特性,实测桩顶位移、桩身应变、以及桩侧摩阻力等变化规律,并对实际运行过程中实心和管式能量桩的承载特性进行初步讨论。研究结果表明,相同直径的管式能量桩换热效率高于实心能量桩,管式能量桩对加热循环的热响应要高于实心能量桩; 多次循环后,能量桩桩顶产生塑性沉降、桩身产生微小的塑性应变,桩侧摩阻力值增加。
Abstract:
Based on model test method, the thermal response of two kinds of precast reinforced concrete piles, the solid energy pile and hollow energy pile, was carried out under thermal cycling loads. The thermal-mechanical coupling behavior of energy piles under multiple heating cycles was analyzed. Displacement of pile head, strain and the lateral friction resistance were measured during the cycling period. The bearing capacity and shear friction of solid and hollow energy piles were studied. It shows that the hollow energy pile has higher heat transfer efficiency than the solid energy pile with same diameter. Faster responses to the thermal loads were also observed on hollow energy piles. Plastic settlement appeared after multiple heating and plastic strain was also observed on the piles. The lateral friction resistance of energy piles increased with thermal cycles, and the hollow energy pile has a faster response of lateral resistance than solid energy pile.

参考文献/References:

[1] 刘汉龙,孔纲强,吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报,2014,36(1): 176-181. Liu H L, Kong G Q, Ng C W W. Review of the applications of energy pile and development of PCC energy pile technical[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181.(in Chinese)
[2] Laloui L, Nuth M, Vulliet L. Experimental and numerical investigations of the behavior of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006,30: 763-781.
[3] Bourne-Webb P J, Amatya B, Soga K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248.
[4] Mccartney J S, Murphy K D. Strain distributions in full-scale energy foundations[J]. The Journal of the Deep Foundations Institute, 2012, 6(2): 26-38.
[5] 桂树强,程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1 087-1 094. Gui Sh Q, Cheng X H. In-situ test for structural responses of energy pile to heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1 087-1 094.(in Chinese)
[6] 路宏伟,蒋 刚,王 昊,等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J].岩土工程学报,2017, 39(2): 334-342. Lu H W, Jiang G, Wang H, et al. In situ tests and analysis of mechanical-thermo bearing characteristic of drilled friction geothermal energy pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342.(in Chinese)
[7] Mccartney J S, Murphy K D. Investigation of potential dragdown/uplift effects on energy piles[J]. Geomechanics for Energy and the Environment, 2017, 10: 21-28.
[8] Ng C W W, Gunawan A, Shi C, et al. Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand: a comparative study [J]. Géotechnique Letters, 2016, 6: 34-38.
[9] 李翔宇, 郭红仙, 程晓辉. 能源桩温度分布的试验与数值研究[J]. 土木工程学报, 2016, 49(4): 102-110. Li X Y, Guo H X, Cheng X H. Experimental and numerical study on temperature distribution in energy piles[J]. China Civil Engineering Journal, 2016, 49(4): 102-110.(in Chinese)
[10] Hassani N G E, Uotinen V M, Kujala K. Numerical modelling of thermal regimes in steel energy pile foundations: A case study[J]. Energy and Buildings, 2014, 69:165-174.
[11] Suryatriyastuti M E, Mroueh H, Burlon S. A load transfer approach for studying the cyclic behavior of thermo-active piles[J]. Computers and Geotechnics, 2014, 55:378-391.
[12] Suryatriyastuti M E, Burlon S, Mroueh H. On the understanding of cyclic interaction mechanisms in an energy pile group [J]. International Journal for Numerical and Analytical Methods in Geomechnics, 2016, 40(1): 3-24.
[13] Brabdl H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2):81-122.
[14] 刘汉龙,丁选明,孔纲强,等. 一种PCC能量桩及制作方法:中国,ZL201210298385.5[P]. 2013-01-30. Liu H L, Ding X M, Kong G Q, et al. A PCC energy pile and its production method: China, Patent number: ZL201210298385.5[P]. 2013-01-30.(in Chinese)
[15] 刘汉龙,王成龙,孔纲强,等. U型、W型和螺旋型埋管形式能量桩热力学特性对比模型试验[J].岩土力学,2016,37(增1): 441-447. Liu H L, Wang Ch L, Kong G Q, et al. Comparative model test on thermo-mechanical characteristics of energy pile with U-shape, W-shape and spiral-shape[J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 441-447.(in Chinese)
[16] 黄 旭,孔纲强,刘汉龙,等. 循环温度场作用下PCC能量桩热力学特性模型试验[J]. 岩土力学,2015, 36(3):667-673. Huang X, Kong G Q, Liu H L, et al. Experimental on thermal-mechanical characteristics of PCC energy pile under circular temperature field[J]. Rock and Soil Mechanics, 2015, 36(3): 667-673.(in Chinese).
[17] Zhou H, Kong G Q, Liu H L. Pressure-controlled elliptical cavity expansion under anisotropic initial stress: Elastic solution and its application[J]. Science China Technological Sciences, 2016, 59(7): 1 100-1 119.
[18] Murphy K D, McCartney J S, Henry K H. Evaluation ofthermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2015, 10(2): 179-195.

相似文献/References:

[1]王芳,王卫永.高温蠕变对钢柱抗火性能的影响[J].防灾减灾工程学报,2016,36(03):425.[doi:10.13409/j.cnki.jdpme.2016.03.017]
 WANG Fang,WANG Weiyong.Effect of High Temperature Creep on the Fire Resistance of Steel Columns[J].Journal of Disaster Prevention and Mitigation Engineering,2016,36(04):425.[doi:10.13409/j.cnki.jdpme.2016.03.017]
[2]王卫永,何平召.考虑高温蠕变影响的钢梁抗火性能[J].防灾减灾工程学报,2016,36(03):486.[doi:10.13409/j.cnki.jdpme.2016.03.025]
 WANG Weiyong,HE Pingzhao.Fire Resistance of Steel Beams Considering Creep at Elevated Temperatures[J].Journal of Disaster Prevention and Mitigation Engineering,2016,36(04):486.[doi:10.13409/j.cnki.jdpme.2016.03.025]
[3]毛德均,钱永久.套箍法加固RC偏压柱承载力计算方法研究[J].防灾减灾工程学报,2019,39(03):454.[doi:10.13409/j.cnki.jdpme.2019.03.011]
 MAO Dejun,QIAN Yongjiu.Research on Calculation Methods of Bearing Capacity of RC Eccentrically Compressed Column Strengthened by Reinforced Concrete Jacketing[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):454.[doi:10.13409/j.cnki.jdpme.2019.03.011]

备注/Memo

备注/Memo:
收稿日期:2017-09-18; 修回日期:2018-04-12 基金项目:国家自然科学基金项目(51378178)资助 作者简介:车 平(1979-),男,高工、博士。主要从事能量桩技术与应用方面的研究。Email:cheping@foxmail.com 通讯作者:孔纲强(1982-),男,教授,博导。主要从事桩-土相互作用方面的研究。Email:gqkong1@163.com
更新日期/Last Update: 2019-09-15