[1]张培龙,裴华富,宋怀博,等.基于改进G-函数的能量桩结构可靠性设计[J].防灾减灾工程学报,2019,39(04):636-644.[doi:10.13409/j.cnki.jdpme.2019.04.014]
 ZHANG Peilong,PEI Huafu,SONG Huaibo,et al.Reliability Design of Energy Pile Structure based on Improvement of G-functions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):636-644.[doi:10.13409/j.cnki.jdpme.2019.04.014]
点击复制

基于改进G-函数的能量桩结构可靠性设计()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
636-644
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Reliability Design of Energy Pile Structure based on Improvement of G-functions
文章编号:
1672-2132(2019)04-0636-09
作者:
张培龙 裴华富 宋怀博 白丽丽
(大连理工大学岩土工程研究所, 辽宁 大连 116024)
Author(s):
ZHANG Peilong PEI Huafu SONG Huaibo BAI Lili
(Institute of Geotechnical Engineering, Dalian University of Technology, Dalian 116024, China)
关键词:
能量桩 G-函数 岩土不确定性 MCS 可靠性设计
Keywords:
energy pile G-functions geotechnical-related uncertainties MCS reliability design
分类号:
TU443
DOI:
10.13409/j.cnki.jdpme.2019.04.014
文献标志码:
A
摘要:
为优化能量桩施工前期设计工作,提高能量桩传热和承载特性效率,采用曲线拟合对能量桩G-函数进行改进,构造了包含桩身尺寸、岩土热物性等参数的响应函数,用Comsol数值模拟验证其正确性,并探讨了其随各因素变化的规律; 用Python软件编制MCS循环来计算不确定场地参数下设计方案的可靠度,汇总工程案例来验证设计模型的正确性,并利用上海某场地参数进行全面的设计步骤。结果表明:在改进G-函数的模型中,利用MCS循环计算可以充分考虑土性参数、桩身尺寸及理论模型的不确定性,给出最佳传热效果和承载特性的设计组合。
Abstract:
In order to optimize the pre-construction design and improve the heat transfer and load bearing characteristic efficiency of the energy pile, curve fitting is adopted to improve the G- function of the energy pile. The response functions are constructed including pile size, geotechnical thermal properties and other parameters. The change rule of the constructed function with each factor was discussed. Its correctness is verified by numerical simulation using Comsol. MCS cycle was programmed with Python software to calculate the reliability of the design scheme under uncertain site parameters. The correctness of the design model is verified by summarizing engineering cases, and the overall design steps are carried out by using parameters of a site in Shanghai. The results show that the uncertainty of soil parameters, pile size and theoretical model can be fully considered by MCS cycle calculation in the improved G-function model, aiming to determine the best design combination and taking heat transfer effect and load bearing characteristics into account.

参考文献/References:

[1] Brandl H. Energy foundations and other thermo-active ground structures [J]. Géotechnique, 2006,56(2):81-122.
[2] 刘汉龙,孔纲强,吴宏伟.能量桩工程应用研究进展及PCC能量桩技术开发[J].岩土工程学报,2014,36(1):170-181. Liu H L, Kong G Q, Ng C W W. Application of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering,2014,36(1):170-181.(in Chinese)
[3] Eskilson P. Simulation-model for thermally interacting heat extraction boreholes[J]. Numerical Heat Transfer, 1987, 13(2):149-165.
[4] 黄 旭,孔纲强,刘汉龙.夏季制冷循环下PCC能量桩负摩阻力特性研究[J].防灾减灾工程学报,2017,37(4):511-519. Huang X, Kong G Q, Liu H L.Negativeskin friction behavior of PCC energy pile under heating cycle[J]. Journal ofDisaster Prevention and Mitigation Engineering, 2017,37(4):511-519.(in Chinese)
[5] Loveridge F, Powrie W. Pile heat exchangers: thermal behaviour and interactions[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 2013, 166(2):178-196.
[6] Man Y, Yang H, Diao N, et al. A newmodel and analytical solutions for borehole and pile ground heat exchangers[J]. International Journal of Heat and Mass Transfer, 2010,53(2):593-601.
[7]Loveridge F, Powrie W. Temperature response functions(G-functions)for singlepile heat exchangers[J]. Energy, 2013,57:554-564.
[8] 桩基地热能利用技术标准:JGJ/T438—2018[S].北京:中国建筑工业出版社,2018. Technical specificationfor geothermal pile: JGJ/T438—2018[S]. Beijing: China Architecture & Building Press,2018.(in Chinese)
[9] 郭红仙,李翔宇,程晓辉.能源桩热响应测试的模拟及适用性评价[J].清华大学学报(自然科学版),2015,55(1):14-20,26. Guo H X, LiX Y, Cheng X H. Simulation and applicability of thermal response tests in energypiles[J]. Journal of Tsinghua University(Science and Technology), 2015,55(1):14-20,26.(in Chinese)
[10] 陈 乐,王尔觉,郭易木.竖直埋管及桩基内埋管换热器传热模型研究进展[J].防灾减灾工程学报,2017,37(4):561-569. Chen L, Wang E J, Guo Y M. Review of analyticalmodels for vertical-borehole ground heat exchangers and energy piles[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):561-569.(in Chinese)
[11] 李翔宇,郭红仙,程晓辉.能源桩温度分布的试验与数值模拟[J].土木工程学报,2016,49(4):102-110. Li X Y, Guo H X, Cheng X H. Experimental and numerical study on temperature distribution on energy piles[J]. China Civil Engineering Journal,2016,49(4):102-110.(in Chinese)
[12] 陆培炎.桩基设计方法[J].岩石力学与工程学报,1994,13(4):14-20,26. Lu P Y. Pile foundation design method[J]. Chinese Journal of Rock Mechanics and Engineering,1994,13(4): 14-20,26.(in Chinese)
[13] 费 康,洪 伟,钱 建.循环温度作用下砂土地基能量桩的长期工作特性[J].防灾减灾工程学报,2017,37(4):527-534. Fei K, Hong W, Qian J. Long-term performance of energy piles subjected to cyclic thermal loading in sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):527-534(in Chinese)
[14] Low B K, Phoon K K. Reliability-based design andits complementary role to Eurocode 7 design approach[J]. Computers and Geotechnics, 2015,65:30-44.
[15] Griffiths D V, Fenton G A. Probabilistic settlement analysis by stochastic and random finite-element methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009,135(11): 1 629-1 637.
[16] Wang Y. Reliability-based design of spread foundations by Monte Carlo simulation[J]. Géotechnique, 2011,61(8):677-685.
[17] Boume-Webb P J, Amatya B, Soga K. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009,59(3):237-248.
[18] Laloui L, Nuth M, Vulliet L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006,30(8):763-781.
[19] 桂树强,程晓辉.能源桩换热过程中结构响应原位试验研究[J].岩土工程学报, 2014,36(6):1087-1 094. Gui Sh Q, Cheng X H. In-situ test for structural responses ofenergy pile to heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014,36(6):1 087-1 094.(in Chinese)
[20] 陈海洋.地源热泵U形竖直地埋管热响应试验及分析[J].暖通空调,2012,42(4):76-78,90. Chen H Y. Thermal response test and analysis of U-type vertical pipe of ground-source heat pumps[J]. Journal of HV&AC,2012,42(4):76-78,90.(in Chinese)
[21] Eurocode 7: geotechnical design- Part 1:general rules, EN 1997-1[S]. The kingdom of Belgium: Comité Européende Normalisation, 2005.

相似文献/References:

[1]黄旭,孔纲强,刘汉龙,等.夏季制冷循环下PCC能量桩负摩阻力特性研究[J].防灾减灾工程学报,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
 HUANG Xu,KONG Gangqiang,LIU Hanlong,et al.Negative Skin Friction Behavior of PCC EnergyPile under Heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
[2]杨涛,花永盛,刘律智.悬浮能量桩热-力学基本特性的数值模拟[J].防灾减灾工程学报,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
 YANG Tao,HUA Yongsheng,LIU Lyuzhi.Numerical Simulation of Basic Thermo-mechanical Behavior of a Floating Energy Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
[3]费康,洪伟,钱建,等.循环温度作用下砂土地基能量桩的长期工作特性[J].防灾减灾工程学报,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
 FEI Kang,HONG Wei,QIAN Jian,et al.Long-term Performance of Energy Piles Subjected to Cyclic Thermal Loading in Sand[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
[4]郝耀虎,孔纲强,彭怀风,等.桩端约束对桩身热力学特性影响的模拟分析[J].防灾减灾工程学报,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
 HAO Yaohu,KONG Gangqiang,PENG Huaifeng,et al.Analysis of Thermo-mechanical Behavior of Single Pile Influenced by Pile Tip Constraint[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
[5]赵刚,李驰,斯日古楞.温度循环下桩土界面特性及桩侧摩阻力数值模拟[J].防灾减灾工程学报,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
 ZHAO Gang,LI Chi,Siriguleng.Friction Characteristics of Pile-soil Interface under Temperature Cycles and Numerical Simulation of Shaft Resistance[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
[6]罗 喆,胡 彪.基于热力荷载传递原理的能量桩长期响应研究[J].防灾减灾工程学报,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
 LUO Zhe,HU Biao.Long-term Response of Energy Pile based on Thermo- mechanical Load-transfer Principle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
[7]杨 涛,刘律智,花永盛.冷-热循环下能量桩热-力学特性的数值模拟[J].防灾减灾工程学报,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
 YANG Tao,LIU Lyuzhi,HUA Yongsheng.Numerical Simulation of Thermo-mechanical Behavior of Energy Pile Subjected to Cooling-heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
[8]陈 智,高华雨,肖衡林,等.温度荷载作用下灌注型能量桩热力响应 原位试验研究[J].防灾减灾工程学报,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
 CHEN Zhi,GAO Huayu,XIAO Henglin,et al.In-situ Thermo-mechanical Response Test of Perfusion Energy Pile under Temperature Loading[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
[9]闫振国,张正威,杨 军.考虑桩身热容的能量桩传热性能分析[J].防灾减灾工程学报,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
 YAN Zhenguo,ZHANG Zhengwei,YANG Jun.Analysis of Heat Transfer Performance of Energy Pile Considering Heat Capacity of Pile Body[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
[10]徐 健,任连伟,马 艳,等.冬季工况下微型钢管桩热力响应特性数值分析[J].防灾减灾工程学报,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]
 XU Jian,REN Lianwei,MA Yan,et al.Numerical Analysis on Thermodynamic Response Characteristics of Micro Steel Piles under Winter Conditions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]

备注/Memo

备注/Memo:
收稿日期:2019-01-25; 修回日期:2019-04-13 基金项目:国家自然科学基金项目(51778170)资助 作者简介:张培龙(1995-),男,硕士研究生。主要从事能量桩可靠性设计及性能研究。Email:563199525@qq.com
更新日期/Last Update: 2019-09-15