[1]高 磊,季保全,刘汉龙,等.螺旋式热源PCC能量桩桩身变形数值模拟研究[J].防灾减灾工程学报,2019,39(04):628-635.[doi:10.13409/j.cnki.jdpme.2019.04.013]
 GAO Lei,JI Baoquan,LIU Hanlong,et al.Numerical Simulation Study on Deformation of PCC Energy Pile with Spiral Heat Source[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):628-635.[doi:10.13409/j.cnki.jdpme.2019.04.013]
点击复制

螺旋式热源PCC能量桩桩身变形数值模拟研究()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
628-635
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Numerical Simulation Study on Deformation of PCC Energy Pile with Spiral Heat Source
文章编号:
1672-2132(2019)04-0628-08
作者:
高 磊1 季保全1 刘汉龙2 陈育民1 曹 阳3
(1.河海大学岩土力学与堤坝工程教育部重点实验室,江苏 南京 210024; 2.重庆大学土木工程学院,重庆 400045; 3.南京工业大学交通运输工程学院,江苏 南京 211800)
Author(s):
GAO Lei1 JI Baoquan1 LIU Hanlong2 CHEN Yumin1 CAO Yang3
(1.Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210024, China; 2.College of Civil Engineering, Chongqing University, Chongqing 400045, China; 3.College of TransportationScience & Engi
关键词:
PCC能量桩 桩身应变 螺旋式热源 桩长 混凝土密度 弹模模量
Keywords:
PCC energy pile strain of pile spiral heat source pile length concrete density elastic modulus of concrete
分类号:
TU443
DOI:
10.13409/j.cnki.jdpme.2019.04.013
文献标志码:
A
摘要:
采用多场耦合软件,建立了螺旋式热源PCC能量桩数值分析模型,分析了温度、荷载、热源匝数、桩长、混凝土密度及混凝土弹性模量等因素对能量桩桩身应变分布的影响。研究结果表明:在无热源情况下,PCC能量桩桩身应变随着桩顶荷载的增大而增大,沿着桩身自上而下逐渐减小; 热源的存在会导致桩身应变由正变负,说明了温度因素的主导性; 桩身应变会随热源温度的升高而减小,在同一热源温度下相同位置处桩身应变均随着桩顶荷载的增加而增加; 设定在热源温度50.5 ℃和桩端顶面40 kN荷载条件下,热源匝数数量的减少会导致桩身应变的增大; 桩身应变随着桩长的不断减小而减小; 混凝土密度的减小使得桩身应变不断减小; 混凝土弹性模量减小导致桩身应变的增大。
Abstract:
The numerical analysis model of spiral heat source PCC energy pile is established by using multiple-field coupling software. The influences of temperature, load, number of heat source turns, pile length, concrete density and elastic modulus of concrete on the strain distribution of energy pile are analyzed. The results show that: in the case of no heat source, the strain of PCC energy pile increases with the increase of pile top loads. The strain of pile decreases gradually along the pile body from top to bottom. The existence of a heat source will lead to the strain of pile changing from positive to negative, which indicates the dominance of the temperature factor. The strain of pile will decrease with the heat source temperature increasing. The strain of pile increases with the increase of pile top load at the same location under the heat source temperature. With the condition of a heat source temperature of 50.5℃ and a load of 40kN on top of pile, the decrease of heat source turns number can cause the increase of pile strain. The strain of pile decreases with the decrease of pile length. The decrease of concrete density makes the strain of pile reduce. The decrease of the elastic modulus of concrete leads to a rise of the pile strain.

参考文献/References:

[1] 费 康,钱 健,洪 伟,等.黏土地基中能量桩力学特性数值分析[J].岩土力学,2018,39(7):2 651-2 661. Fei K, Qian J, Hong W, et al. Numerical analysis of mechanical properties of energy piles in clay foundation [J]. Geotechnical Mechanics, 2018,39(7):2 651-2 661.(in Chinese)
[2] 陈雅涛,常 虹.能量桩技术的工程应用研究[J].江西建材,2018,21(4):63-64. Chen Y T, Chang H. Engineering application research of energy piletechnology [J]. Jiangxi Building Materials, 2018,21(4):63-64.(in Chinese)
[3] 刘汉龙,吴 迪,孔纲强,等.预埋与绑扎埋管形式能量桩传热特性研究[J].岩土力学,2017,38(2):333-340. LiuH L, Wu D, Kong G Q, et al. Study on heat transfer characteristics of energy piles with pre-embedded and buried tubes[J]. Geotechnical Mechanics, 2017, 38(2): 333-340.(in Chinese)
[4] 孔纲强,王成龙,刘汉龙,等.多次温度循环对能量桩桩顶位移影响分析[J].岩土力学,2017,38(4):958-964. Kong G Q, Wang Ch L, Liu H L, et al. Effectof repeated temperature cycles on displacement of energy pile top[J]. Geotechnical Mechanics, 2017,38(4):958-964.(in Chinese)
[5] 王成龙,刘汉龙,孔纲强, 等.不同埋管形式下能量桩热力学特性模型试验研究[J].工程力学,2017,34(1):85-91. Wang Ch L, Liu H L, Kong G Q, et al. Model test study on thermodynamic characteristics of energy pile under different buried pipe forms[J].EngineeringMechanics, 2017,34(1):85-91.(in Chinese)
[6] Gao J, Zhang X, Liu J, et al. Numerical andexperimental assessment of thermal performance of vertical energy piles: an application [J]. Applied Energy, 2008, 85(10): 901-910.
[7] Jung K, Chun B, Park S, et al. Test construction of cast-in-place concrete energy pile in dredgedand reclaimed ground[J]. Journal of Performance of Constructed Facilities, 2013,29(1): 04014035.
[8] Li M, Lai A C. New temperature response functions(G functions)for pile and borehole ground heat exchangers based on composite-mediumline-source theory [J]. Energy, 2012, 38(1): 255-263.
[9] Yi M, Yang H, FangZ, et al. Analytical thermal analysis of novel foundation pile ground heat exchanger with spiral coils[C]∥Berlin Heidelberg: Springer, 2014: 653-663.
[10] Knellwolf C, Peron H, Laloui L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10):890-902.
[11] Bourne-Webb P J, Amatya B, Soga K. A framework for understanding energy pile behavior[J].Geotechnical Engineering,2012,166(2): 170-177.
[12] Mimouni T, Laloui L.Towards a secure basis for the design of geothermal piles [J]. Acta Geotechnica, 2014, 9(3): 355-366.
[13] 黄 旭,孔纲强,刘汉龙, 等.循环温度场作用下PCC 能量桩热力学特性模型试验研究[J].岩土力学,2015,36(3):667-673. Huang X, Kong G Q, Liu H L, et al. Model test study on thermodynamic characteristics of PCC energy pile under cyclic temperature field[J]. Geotechnical Mechanics,2015,36(3):667-673.(in Chinese)
[14] 李翔宇,郭红仙,程晓辉.能源桩温度分布的试验与数值研究[J].土木工程学报,2016,49(4):102-110. Li X Y, Guo H X, Cheng X H. Experimental and numerical study on temperature distribution of energy piles[J].ChinaCivil Engineering Journal,2016,49(4):102-110.(in Chinese)
[15] 李文柱.桩基螺旋管式换热器传热特性数值模拟[D]. 重庆:重庆大学, 2014. Li W Zh. Numerical simulation ofheat transfer characteristics of spiral tube heat exchanger with pile foundation[D].Chongqing: Chongqing University,2014.(in Chinese)
[16] Jeong S, Lim H, Lee J K, etal. Thermally induced mechanical response of energy piles in axially loaded pile groups[J]. Applied Thermal Engineering, 2014, 71(1): 608-615.
[17] Ng C WW, Ma Q J, Gunawan A. Horizontal stress change of energy piles subjected to thermal cycles in sand[J]. Computers and Geotechnics,2016,78:54-61.
[18] Ng C WW, Shi C, Gunawan A, et al. Centrifuge modelling of heating effects on energy pile performance in saturated sand[J]. Canadian Geotechnical Journal, 2014, 52(8): 1 045-1 057.
[19] 水工混凝土试验规程:SD105—82[S].北京:水利电力出版,1983. Hydraulic concrete test regulations:SD105—82[S]. Beijing:Water Conservancy and Electric PowerPublishing,1983.(in Chinese)
[20] Yang W, Yang J, Kong L. Numerical simulation and validation on heat exchange performance of pile spiral coil ground heat exchanger[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(5): 200-205.
[21] Mehrizi A A, Porkhial S, Bezyan B, et al. Energy pile foundationsimulation for different configurations of ground source heat exchanger[J]. International Communications in Heat and Mass Transfer,2016,70:105-114.

相似文献/References:

[1]黄旭,孔纲强,刘汉龙,等.不封底PCC能量桩与传统能量桩换热效率对比研究[J].防灾减灾工程学报,2018,38(05):867.[doi:10.13409/j.cnki.jdpme.2018.05.014]
 HUANG Xu,KONG Gangqiang,LIU Hanlong,et al.Comparative Study on Heat Transfer Efficiency of PCC and Traditional Energy Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2018,38(04):867.[doi:10.13409/j.cnki.jdpme.2018.05.014]

备注/Memo

备注/Memo:
收稿日期:2019-03-15; 修回日期:2019-04-16 基金项目:国家自然科学基金(51508159)、江苏省自然科学基金(BK20151495)、中央高校基本科研业务费专项资金(2019B12914)资助 作者简介:高 磊(1984-),男,副教授,博士。主要从事工程地质和环境岩土方面的研究。Email:jacob6521@163.com
更新日期/Last Update: 2019-09-15