[1]闫振国,张正威,杨 军.考虑桩身热容的能量桩传热性能分析[J].防灾减灾工程学报,2019,39(04):599-606.[doi:10.13409/j.cnki.jdpme.2019.04.009]
 YAN Zhenguo,ZHANG Zhengwei,YANG Jun.Analysis of Heat Transfer Performance of Energy Pile Considering Heat Capacity of Pile Body[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):599-606.[doi:10.13409/j.cnki.jdpme.2019.04.009]
点击复制

考虑桩身热容的能量桩传热性能分析()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
599-606
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Analysis of Heat Transfer Performance of Energy Pile Considering Heat Capacity of Pile Body
文章编号:
1672-2132(2019)04-0599-08
作者:
闫振国1 张正威2 杨 军1
(1.清华大学土木工程安全与耐久教育部重点实验室, 北京 100084; 2.浙江农林大学风景园林与建筑学院, 浙江 杭州 311300)
Author(s):
YAN Zhenguo1 ZHANG Zhengwei2 YANG Jun1
(1.Key Laboratory of Civil Engineering Safety andDurability of China Education Ministry, Tsinghua University, Beijing 100084, China; 2.The College of Landscape Architecture, Zhejiang Agriculture and ForestryUniversity, Hangzhou 311300, China)
关键词:
能量桩 热容 桩径 热扩散系数
Keywords:
energy pile heat capacity pile diameter thermal diffusion coefficient
分类号:
TU833.3
DOI:
10.13409/j.cnki.jdpme.2019.04.009
文献标志码:
A
摘要:
与传统垂直钻孔地埋热交换器相比,能量桩桩径较大,需考虑桩身热容对能量桩传热的影响。利用无限长线热源模型与无限长桩热源模型的解析解对不同桩身热容的能量桩在饱和黏土中的传热过程进行对比计算,分析桩身热容对能量桩传热性能的影响。当桩身为混凝土时,不同粗集料引起的热容差异对能量桩传热初期造成影响,桩径是影响能量桩传热的主要因素之一,而混凝土桩与钢桩的热容差异对能量桩传热的影响较大。分析表明,整个传热过程分为两个阶段,初期热源向桩内外传递的比例取决于桩身和桩周物质热扩散系数的相对值,桩身的热扩散系数相对越大,向桩内传递热量越快,桩外过余温度越低; 当桩内温度达到均衡时,向桩内传递的热量取决于桩面处土体的温度以及桩身的热容。对于第一阶段,桩热源模型比线热源模型更能精细地描述能量桩的传热性能; 对于第二阶段,两种模型的计算结果差别很小。
Abstract:
Compared with the traditional used vertical borehole ground heat exchanger, energy pile has a larger diameter. The effect of heat capacity of pile body on heat transfer needs to be considered. The analytical solutions of infinite line-source model and infinite pile-source model were used to compare the heat transfer process within energy piles of different heat capacities in saturated clay, so as to examine the influence of heat capacity on heat transfer performance. For pile bodies made of concrete, the heat capacity difference caused by the different types of coarse aggregate had an impact on initial heat transfer performance. The pile diameter was seen as one of the major factors affecting heat transfer. The heat capacity difference between concrete piles and steel piles had a larger impact on heat transfer performance. The results showed that the whole heat transfer process is divided into two phases. In the first phase, the speed of heat transfer from the source to the inside and outside of the pile depends on the relative value of the thermal diffusion coefficient of the pile body and soils around the pile. The larger the pile's thermal diffusion coefficient is, the faster the heat transfer to the inside of the pile, the lower the excess temperature outside the pile is. When the temperature inside the pile reaches a balance, the amount of heat transferred to the inside of the pile depends on the temperature of the soil around the pile and the heat capacity of the pile body. For the first phase, the pile-source model is more precise than the line-source model in describing the heat transfer performance. For the second phase, the difference between the results of the two models is negligible.

参考文献/References:

[1] Lyesse L, Alice D D. Understanding the behavior of energy geo-structures[J]. Civil Engineering, 2011,164(4):184-191.
[2] 赵石娆, 张正威.竖直地埋管换热器钻孔外换热解析模型研究现状[J]. 暖通空调, 2014(1):115-120. Zhao Sh R, Zhang Zh W. Review of analytical models for heat transfer outside borehole of vertical ground heat exchangers[J]. Heating Ventilating & Air Conditioning, 2014(1):115-120.(in Chinese)
[3] 陈 乐, 王尔觉, 郭易木,等. 竖直埋管及桩基内埋管换热器传热模型研究进展[J]. 防灾减灾工程学报, 2017,37(4):557-564. Chen L,Wang E J, Guo Y M, et al. Review of analytical models for vertical-borehole ground heat exchangers and energy piles[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):557-564.(in Chinese)
[4] Bourne W P, Burlon S,Javed S, et al. Analysis and design methods for energy geostructures[J]. Renewable and Sustainable Energy Reviews, 2016,65:402-419.
[5] Man Y, Yang H X,Diao N R, et al. A new model and analytical solutions for borehole and pile ground heat exchangers[J]. International Journal of Heat and Mass Transfer, 2010,53:2 593-2 601.
[6] Man Y, Yang H X, Diao N R, et al. Development of spiralheat source model for novel pile ground heat exchangers[J]. HVAC&R Research,2011,17(6):1 075-1 088.
[7] Cui P, Li X, Man Y, et al. Heat transfer analysis of pile geothermal heat exchangers with spiral coils[J]. Applied Energy, 2011, 88:4 113-4 119.
[8] Huang G Q, Yang X F, Liu Y J, et al. A novel truncatedcone helix energy pile: Modelling and investigations of thermal performance[J]. Energy and Buildings, 2018,158:1 241-1 256.
[9] 李晓星. 成层岩土介质传热特性研究[D]. 南京:南京工业大学,2016. Li X X. Heat Transfer characteristics oflayered soil medium[D]. Nanjing: Nanjing Tech University, 2016.(in Chinese)
[10] Fleur L, William P. 2D Thermal resistance of pile heat exchangers[J]. Géothermics, 2014, 50:122-135.
[11] Alberto C, Pasquale M, Nicola M, et al. Energy piles for ground sourceheat pump applications: comparison of heat transfer performance for different design and operating parameters[J]. Applied Thermal Engineering, 2017, 124:1 492-1 504.
[12] Reza S, Younes N, Vahid D. Numerical simulation of a novel spiral type ground heat exchanger for enhancing heat transfer performance of geothermal heat pump[J]. Energy Conversion and Management, 2018, 168:296-307.
[13] 熊泽琛, 郭红仙, 程晓辉. 饱和砂土热流耦合离心机试验的有限元分析[J]. 防灾减灾工程学报, 2017,37(4):604-610. Xiong Z Ch, Guo H X,Chen X H. Finite element analysis of thermal-hydraulic coupled centrifuge testfor saturated sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):601-610.(in Chinese)
[14] Li M, Lai A C K. Review of analytical models for heat transfer by vertical ground heat exchangers(GHEs): a perspective of time and space scales[J]. Applied Energy, 2015,151:178-191.
[15] 李晓星, 胡夏闽, 张正威. 竖直埋管换热器热响应半径计算方法[J]. 农业工程学报, 2015, 31(17):248-253. Li X X, Hu X M, Zhang Zh W. Calculation method of thermal response radius for vertical borehole heat exchangers[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 248-253.(in Chinese)
[16] Sangwoo P, Chihun S, Kyoungsik J, et al. Constructability and heat exchange efficiency of large diameter cast-in-place energypiles with various configurations of heat exchange pipe[J]. Applied Thermal Engineering, 2015,90:1 061-1 071.
[17] Veli M U, Jukka R. Applications and development of modern steel pile technology[J]. Procedia Engineering, 2013, 57:1173-1 182.
[18] 混凝土结构设计规范: GB50011—2010[S]. 北京:中国建筑工业出版社, 2010. Code for design of concrete structures: GB50011—2010[S]. Beijing: China Architecture & Building Press, 2010.(inChinese)
[19] Thermal pile design, installation and materials standards[S]. UK: Ground Source Heat Pump Association Milton Keynes, 2012.

相似文献/References:

[1]黄旭,孔纲强,刘汉龙,等.夏季制冷循环下PCC能量桩负摩阻力特性研究[J].防灾减灾工程学报,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
 HUANG Xu,KONG Gangqiang,LIU Hanlong,et al.Negative Skin Friction Behavior of PCC EnergyPile under Heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
[2]杨涛,花永盛,刘律智.悬浮能量桩热-力学基本特性的数值模拟[J].防灾减灾工程学报,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
 YANG Tao,HUA Yongsheng,LIU Lyuzhi.Numerical Simulation of Basic Thermo-mechanical Behavior of a Floating Energy Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
[3]费康,洪伟,钱建,等.循环温度作用下砂土地基能量桩的长期工作特性[J].防灾减灾工程学报,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
 FEI Kang,HONG Wei,QIAN Jian,et al.Long-term Performance of Energy Piles Subjected to Cyclic Thermal Loading in Sand[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
[4]郝耀虎,孔纲强,彭怀风,等.桩端约束对桩身热力学特性影响的模拟分析[J].防灾减灾工程学报,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
 HAO Yaohu,KONG Gangqiang,PENG Huaifeng,et al.Analysis of Thermo-mechanical Behavior of Single Pile Influenced by Pile Tip Constraint[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
[5]赵刚,李驰,斯日古楞.温度循环下桩土界面特性及桩侧摩阻力数值模拟[J].防灾减灾工程学报,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
 ZHAO Gang,LI Chi,Siriguleng.Friction Characteristics of Pile-soil Interface under Temperature Cycles and Numerical Simulation of Shaft Resistance[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
[6]罗 喆,胡 彪.基于热力荷载传递原理的能量桩长期响应研究[J].防灾减灾工程学报,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
 LUO Zhe,HU Biao.Long-term Response of Energy Pile based on Thermo- mechanical Load-transfer Principle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
[7]杨 涛,刘律智,花永盛.冷-热循环下能量桩热-力学特性的数值模拟[J].防灾减灾工程学报,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
 YANG Tao,LIU Lyuzhi,HUA Yongsheng.Numerical Simulation of Thermo-mechanical Behavior of Energy Pile Subjected to Cooling-heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
[8]陈 智,高华雨,肖衡林,等.温度荷载作用下灌注型能量桩热力响应 原位试验研究[J].防灾减灾工程学报,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
 CHEN Zhi,GAO Huayu,XIAO Henglin,et al.In-situ Thermo-mechanical Response Test of Perfusion Energy Pile under Temperature Loading[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
[9]张培龙,裴华富,宋怀博,等.基于改进G-函数的能量桩结构可靠性设计[J].防灾减灾工程学报,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
 ZHANG Peilong,PEI Huafu,SONG Huaibo,et al.Reliability Design of Energy Pile Structure based on Improvement of G-functions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
[10]徐 健,任连伟,马 艳,等.冬季工况下微型钢管桩热力响应特性数值分析[J].防灾减灾工程学报,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]
 XU Jian,REN Lianwei,MA Yan,et al.Numerical Analysis on Thermodynamic Response Characteristics of Micro Steel Piles under Winter Conditions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]

备注/Memo

备注/Memo:
收稿日期:2019-01-30; 修回日期:2019-04-17 基金项目:国家自然科学基金项目(51778585)、浙江省建设科研项目(2017K36)、杭州市建委科技项目(2017HK22)资助 作者简介:闫振国(1988-),男,博士研究生。主要从事浅层地热能利用研究。Email:yzg17@mails.tsinghua.edu.cn 通讯作者:杨 军(1974-),男,副研究员,博士。主要从事地下工程方面的研究。Email:junyang@tsinghua.edu.cn
更新日期/Last Update: 2019-09-15