[1]陈 智,高华雨,肖衡林,等.温度荷载作用下灌注型能量桩热力响应 原位试验研究[J].防灾减灾工程学报,2019,39(04):592-598.[doi:10.13409/j.cnki.jdpme.2019.04.008]
 CHEN Zhi,GAO Huayu,XIAO Henglin,et al.In-situ Thermo-mechanical Response Test of Perfusion Energy Pile under Temperature Loading[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):592-598.[doi:10.13409/j.cnki.jdpme.2019.04.008]
点击复制

温度荷载作用下灌注型能量桩热力响应 原位试验研究()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
592-598
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
In-situ Thermo-mechanical Response Test of Perfusion Energy Pile under Temperature Loading
文章编号:
1672-2132(2019)04-0592-07
作者:
陈 智 高华雨 肖衡林 马 强 阙梦珂
(湖北工业大学土木建筑与环境学院, 湖北 武汉430068)
Author(s):
CHEN Zhi GAO Huayu XIAO Henglin MA Qiang QUE Mengke
(School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)
关键词:
能量桩 灌注型 温度荷载 热力响应
Keywords:
energypile perfusion temperature load thermal and mechanical response
分类号:
TU473
DOI:
10.13409/j.cnki.jdpme.2019.04.008
文献标志码:
A
摘要:
能量桩是一种利用浅层地热的建筑节能技术,具有比传统地源热泵系统更高的换热效率以及节约占地等优点。对能量桩试验基地的1#、2#足尺灌注型能量桩进行加热试验,测试桩身温度、应变、附加应力和侧摩阻力等分布规律,分析夏季工况仅温度荷载作用下(温升10 ℃)能量桩的热力响应。试验结果表明:沿桩壁对称布设多组U型换热管的灌注桩,其桩身温度分布较均匀,桩身应变呈现为两端大中间小,最大附加应力位于桩中部; 随着温度荷载的增加,桩体桩侧摩阻力表现为上负下正,桩中部正负交界处的侧摩阻力增长要明显快于桩两端,温升达到7.5℃之后,其增长趋势减弱; 本试验条件下,通过对桩体附加应力变化规律的拟合得出其值可能超过1.66 MPa,在设计时必须考虑温度荷载对桩承载力的影响。
Abstract:
Energy pile is a building energy-saving technology by utilizing shallow geothermal energy. It has the advantages of higher heat transfer efficiency and land saving than traditional ground source heat pump system. Heating tests were carried out on the 1# and 2# full-scale perfusion energy piles in the energy pile test base to obtain the temperature, strain, additional stress and lateral friction resistance of the pile. The thermal and mechanical responses of energy piles subjected to temperature loading(temperature rise of 10 ℃)of summer condition were analyzed. The test results show that: For multi-group U type heat exchange pipe arranged along the pile wall, the temperature distribution of pile body is uniform, the strain of pile body is large at both ends and small in the middle, and the maximum additional stress is located in the middle of pile. With the increase of temperature load, the lateral friction resistance of pile is positive at the top and negative at the bottom. The increase of the lateral friction resistance at the junction of positive and negative in the middle of pile is faster than that at both ends of pile. When the temperature rises to 7.5℃, the increase rate decreases. Under this test condition, the value of the additional stress of pile may exceed 1.66MPa by fitting the law of the change of the additional stress of pile. The influence of temperature load on the bearing capacity of pile must be considered in design.

参考文献/References:

[1] 茅靳丰, 潘 登, 耿世彬,等. 地源热泵在地下工程的应用研究与展望[J].地下空间与工程学报, 2015,11(增1):252-256. Mao J F, Pan D, Geng Sh B, et al. Research on application of GSHP in underground engineering and its prospects[J]. Chinese Journal of Underground Space and Engineering, 2015,11(Sup 1):252-256.(inChinese)
[2] 夏才初, 张国柱, 孙 猛.能源地下结构的理论及应用[M]. 上海:同济大学出版社, 2015. Xia C Ch, Zhang G Zh, Sun M. Theory and application of energy underground structure[M]. Shanghai: Tongji University Press, 2015.(in Chinese)
[3] 桂树强,程晓辉, 张志鹏. 地源热泵桩基与钻孔埋管换热器换热性能比较[J]. 土木建筑与环境工程, 2013,35(3):151-156. Gui Sh Q, Cheng X H. Zhang Zh P. Comparative analysisof heat exchange performance of energy piles and borehole heat exchangers in GSHP System[J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(3):151-156.(in Chinese)
[4] 方鹏飞, Bouazza A, Bill W,等. 温度对地热能源桩承载性状的影响[J]. 防灾减灾工程学报, 2017, 37(4):540-545. Fang P F, Bouazza A, Bill W, et al. Influence of thermal loading on bearing capacity of geothermal energy piles [J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4):540-545.(in Chinese)
[5] 陈 乐, 王尔觉, 郭易木, 等. 竖直埋管及桩基内埋管换热器传热模型研究进展[J]. 防灾减灾工程学报, 2017, 37(4):557-564. Chen L, Wang E J, Guo Y M, et al. Review of analytical models for vertical-borehole ground heat exchangers and energy piles [J]. Journal of DisasterPrevention and Mitigation Engineering, 2017,37(4):557-564.(in Chinese)
[6]Murphy K D, Mccartney J S, Henry K S. Evaluation of thermo-mechanical andthermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2015,10(2):179-195.
[7] 赵海丰, 唐荣彬, 桂树强,等. 双U型埋管能源桩桩周岩土体温度场分布特征试验研究[J]. 土木建筑与环境工程, 2016, 38(5):157-163. Zhao H F, TangR B, Gui Sh Q, et al. Experimental analysis of ground temperature distribution of double-U type energy piles[J]. Journal of Civil, Architectural & Environmental Engineering, 2016,38(5):157-163.(in Chinese)
[8] Laloui L, Nuth M, Vulliet L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2005,30(8):763-781.
[9] 郝耀虎, 孔纲强, 彭怀风,等. 桩端约束对桩身热力学特性影响的模拟分析[J]. 防灾减灾工程学报, 2017,37(4):532-539. Hao Y H, Kong G Q, Peng H F, et al. Analysis of thermo-mechanical behavior of sigle pile influenced by pile tip constraint[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):532-539.(in Chinese)
[10] 黄 旭, 孔纲强, 刘汉龙,等. 夏季制冷循环下PCC能量桩负摩阻力特性研究[J]. 防灾减灾工程学报, 2017, 37(4):511-517. Huang X, Kong G Q, Liu H L, et al. Negative skin friction behavior of PCC energy pile under heating cycle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4):511-517.(in Chinese)
[11] 夏才初, 朱建龙, 曹诗定. 地下连续墙内热交换管引起的温度应力研究[J]. 地下空间与工程学报, 2014, 10(1):90-95. Xia C Ch, Zhu J L, Cao Sh D. Research of thermal stress inducedby the heat exchanger pipes buried in the diaphragm wall[J]. Chinese Journalof Underground Space and Engineering. 2014, 10(1):90-95.(in Chinese)
[12] Bourne-Webb P J, Amatya B, Soga K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J].Géotechnique, 2009, 59(3):237-248.
[13] Brandl H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2):81-122.
[14] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6):1 087-1 094. Gui Sh Q,Cheng X H. In-situ test on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014,36(6):1 087-1 094.(in Chinese)
[15] 路宏伟, 蒋 刚, 王 昊,等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报,2017, 39(2):334-342. Lu H W, Jiang G, Wang H, et al. In site tests and analysisof mechanical-thermo bearing characteristic of drilled friction geothermal energy pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2):334-342.(in Chinese)

相似文献/References:

[1]黄旭,孔纲强,刘汉龙,等.夏季制冷循环下PCC能量桩负摩阻力特性研究[J].防灾减灾工程学报,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
 HUANG Xu,KONG Gangqiang,LIU Hanlong,et al.Negative Skin Friction Behavior of PCC EnergyPile under Heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
[2]杨涛,花永盛,刘律智.悬浮能量桩热-力学基本特性的数值模拟[J].防灾减灾工程学报,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
 YANG Tao,HUA Yongsheng,LIU Lyuzhi.Numerical Simulation of Basic Thermo-mechanical Behavior of a Floating Energy Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
[3]费康,洪伟,钱建,等.循环温度作用下砂土地基能量桩的长期工作特性[J].防灾减灾工程学报,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
 FEI Kang,HONG Wei,QIAN Jian,et al.Long-term Performance of Energy Piles Subjected to Cyclic Thermal Loading in Sand[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
[4]郝耀虎,孔纲强,彭怀风,等.桩端约束对桩身热力学特性影响的模拟分析[J].防灾减灾工程学报,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
 HAO Yaohu,KONG Gangqiang,PENG Huaifeng,et al.Analysis of Thermo-mechanical Behavior of Single Pile Influenced by Pile Tip Constraint[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
[5]赵刚,李驰,斯日古楞.温度循环下桩土界面特性及桩侧摩阻力数值模拟[J].防灾减灾工程学报,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
 ZHAO Gang,LI Chi,Siriguleng.Friction Characteristics of Pile-soil Interface under Temperature Cycles and Numerical Simulation of Shaft Resistance[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
[6]罗 喆,胡 彪.基于热力荷载传递原理的能量桩长期响应研究[J].防灾减灾工程学报,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
 LUO Zhe,HU Biao.Long-term Response of Energy Pile based on Thermo- mechanical Load-transfer Principle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
[7]杨 涛,刘律智,花永盛.冷-热循环下能量桩热-力学特性的数值模拟[J].防灾减灾工程学报,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
 YANG Tao,LIU Lyuzhi,HUA Yongsheng.Numerical Simulation of Thermo-mechanical Behavior of Energy Pile Subjected to Cooling-heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
[8]闫振国,张正威,杨 军.考虑桩身热容的能量桩传热性能分析[J].防灾减灾工程学报,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
 YAN Zhenguo,ZHANG Zhengwei,YANG Jun.Analysis of Heat Transfer Performance of Energy Pile Considering Heat Capacity of Pile Body[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
[9]张培龙,裴华富,宋怀博,等.基于改进G-函数的能量桩结构可靠性设计[J].防灾减灾工程学报,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
 ZHANG Peilong,PEI Huafu,SONG Huaibo,et al.Reliability Design of Energy Pile Structure based on Improvement of G-functions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
[10]徐 健,任连伟,马 艳,等.冬季工况下微型钢管桩热力响应特性数值分析[J].防灾减灾工程学报,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]
 XU Jian,REN Lianwei,MA Yan,et al.Numerical Analysis on Thermodynamic Response Characteristics of Micro Steel Piles under Winter Conditions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]

备注/Memo

备注/Memo:
收稿日期:2019-03-08; 修回日期:2019-04-12 基金项目:国家自然科学基金项目(51808203)、湖北省技术创新专项重大项目(CXZD2017000373)、湖北省教育厅 科学技术研究计划青年人才项目(Q20181405)资助 作者简介:陈 智(1988-),男,讲师,博士。主要从事能源岩土工程方面的研究。Email:chenzhi1988420@126.com 通讯作者:肖衡林(1977-),男,教授。主要从事环境岩土方面的研究。Email:xiao-henglin@163.com
更新日期/Last Update: 2019-09-15