[1]杨 涛,刘律智,花永盛.冷-热循环下能量桩热-力学特性的数值模拟[J].防灾减灾工程学报,2019,39(04):585-591.[doi:10.13409/j.cnki.jdpme.2019.04.007]
 YANG Tao,LIU Lyuzhi,HUA Yongsheng.Numerical Simulation of Thermo-mechanical Behavior of Energy Pile Subjected to Cooling-heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):585-591.[doi:10.13409/j.cnki.jdpme.2019.04.007]
点击复制

冷-热循环下能量桩热-力学特性的数值模拟()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
585-591
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Numerical Simulation of Thermo-mechanical Behavior of Energy Pile Subjected to Cooling-heating Cycle
文章编号:
1672-2132(2019)04-0585-07
作者:
杨 涛1 刘律智2 花永盛1
(1.上海理工大学土木工程系,上海 200093; 2.中国有色金属工业昆明勘察设计研究院有限公司, 云南 昆明 650051)
Author(s):
YANG Tao1 LIU Lyuzhi2 HUA Yongsheng1
(1.Department of Civil Engineering, University of Shanghai for Scienceand Technology, Shanghai 200093, China; 2.Kunming Prospecting Design Institute of China Nonferrous Metals Industry, Kunming 650051, China)
关键词:
能量桩 热-力学特性 数值模拟 热荷载 冷-热循环
Keywords:
energy pile thermo-mechanical behavior numerical simulation thermal loading cooling- heating cycle
分类号:
TU443
DOI:
10.13409/j.cnki.jdpme.2019.04.007
文献标志码:
A
摘要:
能量桩与地基土的热交换取决于建筑物的年能源需求,故能量桩每年受到冷-热循环作用。采用多场耦合有限元数值模拟方法,研究在力学荷载和随时间按正弦函数变化的温度荷载共同作用下悬浮能量桩的热-力学特性。结果表明,随着能量桩冷-热周期性的循环,温度荷载引起的桩身附加轴向应力、桩头附加竖向位移和桩侧附加剪应力也随时间周期性变化,且相位与温度荷载曲线的相位相同。桩升温最大时桩身轴向压应力达到最大值,桩降温最大时桩头沉降达到最大值。地基土的温度改变量随时间周期性地变化,其幅值在桩的中部深度附近最大,在桩二端深度附近较小。地基土温度的变化滞后于温度荷载。离桩越远,地基土的温度达到其最大值的时间越滞后。
Abstract:
Thermal exchange between an energy pile and the surrounding soil depends on the annual energy needs of a building. Thus, energy piles will undergo a cooling-heating cycle per year. Using the coupling multi-physical finite element simulation method, the thermo-mechanical behavior of a floating energy pile under mechanical loading and sinusoidal cyclic thermal loading is investigated. The results show that with cooling-heating cycle of an energy pile, the thermally-induced additional axial stress, the additional vertical pile head displacement and the shaft shear stress change periodically with time, and they have the same phase as thermal loading curve. The maximum axial compressive stress of an energy pile occurs when its temperature is the highest. The pile head settlement reaches its peak value when pile temperature is the lowest. The ground temperature changes periodically with time. The amplitude is the largest near the middle of the energy pile, and is smaller near the two ends of the energy pile. The variation of ground temperature lags behind the thermal loading. The longer the distance away from the energy pile, the more the time it takes for the ground temperature to reach its maximum.

参考文献/References:

[1] Brandl H. Energyfoundations and other thermo-active ground structures [J]. Géotechnique, 2006, 56(2): 81-122.
[2] Amis T, Loveridge F. Energy piles and other thermal foundations for GHSP [J]. REHVA Journal, 2014,1:32-35.
[3] Bourne-Webb P J,Amatya B, Soga K, et al. Energy pile test at lambeth college, London: Geotechnical and thermodynamic aspects of pile response to heat cycles[J].Géotechnique, 2009, 59(3): 237-248.
[4] McCartney J S, Murphy K D. Strain distributionsin fullscale energy foundations[J]. The Journal of the DeepFoundationsInstitute, 2012, 6(2): 28-36.
[5] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1 087-1 094. Gui Sh Q, Cheng X H. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1 087-1 094.( in Chinese)
[6] Murphy K D, McCartney J S, Henry K S. Evaluation ofthermo-mechanical and thermal behavior of full-scale energyfoundations[J]. Acta Geotechnica, 2014, 10(2): 179-195.
[7] Chen Y H, Xu J, Li H, et al. Performance of a prestressedconcrete pipe energy pile during heating and cooling[J].Journal of Performance of Constructed Facilities,2017,31(3): 06017001-1-7.
[8] 路宏伟,蒋 刚,王 昊,等.摩擦型能源桩荷载–温度现场联合测试与承载性状分析[J].岩土工程学报, 2017,39(2):334-342. Lu H W, Jiang G, Wang H, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermalenergy piles[J]. Chinese Journal of Geotechnical Engineering,2017,39(2):334-342.( in Chinese)
[9] Stewart M A, McCartney J S. Centrifuge modeling ofsoil-structure interaction in energy foundations [J]. Journal ofGeotechnical and Geoenvironmental Engineering,2014,140(4): 04013044-1-11.
[10] Ng C W W, Shi C, Gunawan A,et al. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay [J]. Geotechnique Letters, 2014,4(4):310-316.
[11] Good J C, McCartney J S. Centrifuge modeling of endrestraint effects in energy pile foundation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015,141(8):04015034-1-13.
[12] 黄 旭,孔纲强,刘汉龙,等.循环温度场作用下PCC 能量桩热力学特性模型试验研究[J].岩土力学,2015,36(3):667-673. Huang X, Kong G Q, Liu H L, et al. Experimental researchon thermo-mechanical characteristics of PCC energy pileunder cyclic temperature field[J]. Rock and Soil Mechanics,2015,36(3):667-673.(in Chinese)
[13] 刘干斌, 谢琦峰, 范高飞,等.饱和黏土中热交换桩承载力特性模型试验研究[J].岩石力学与工程学报,2017,36(10):2 535-2 543. Liu G B, Xie Q F, Fan G F,et al. Model test on bearingcapacity characteristics of heat exchanger pilesin saturatedclays[J]. Chinese Journal of Rock Mechanics and Engineering, 2017,36(10):2 535-2 543.(in Chinese)
[14] 孔纲强,王成龙,刘汉龙,等.多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学,2017,38(4):1-7. Kong G Q,Wang ChL, Liu H L,et al.Analysis of pile headdisplacement of energy pile under repeated temperaturecycling[J]. Rock and Soil Mechanics, 2017,38(4):1-7.(inChinese)
[15] Olgun C G, Ozudogru T Y, Arson C F. Thermomechanical radialexpansion of heat exchanger piles andpossible effects on contact pressures at pile-soil interface[J].Geotechnique Letters, 2014, 4(3): 170-178.
[16] Ozudogru T Y, Olgun C G, Arson C F. Analysis offriction induced thermo-mechanical stresses on a heatexchanger pile in isothermal soil [J]. Geotechnical andGeological Engineering, 2015, 33(2):357-371.
[17] Di Donna A, Laloui L. Numerical analysis of thegeotechnical behaviour of energy piles [J]. InternationalJournal for Numerical and Analytical Methods inGeomechanics, 2015, 39(8):861-888.
[18] Olgun C G, Ozudogru T Y, Abdelaziz S L, et al. Long-termperformance of heat exchanger piles [J]. Acta Geotechnica,2015, 10(5):553-569.
[19] Loria A F R, Di Donna A, Laloui L. Numerical study on the suitability of centrifuge testing for capturing the thermal-induced mechanical behavior ofenergy piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015,141(10): 04015042-1-10.
[20] 杨 涛,花永盛,刘律智.悬浮能量桩热-力学基本特性的数值模拟[J].防灾减灾工程学报,2017, 37(4):518-524. Yang T, Huang Y Sh, Liu L Zh. Numerical simulation of basicthermo-mechanical behavior of afloating energy pile[J]. Journal of Disaster Prevention and Mitigation Engineering,2017, 37(4):518-524.(in Chinese)
[21] 费 康,洪 伟,钱 建,等. 循环温度作用下砂土地基能量桩的长期工作特性[J].防灾减灾工程学报,2017,37(4):525-531. Fei K, Hong W, Qian J, et al. Long-term performance ofenergy piles subjected to cyclic thermal load in sand[J].Journal of Disaster Prevention andMitigation Engineering,2017, 37(4):525-531.(in Chinese)
[22] 郝耀虎,孔纲强,彭怀风.桩端约束对桩身热力学特性影响的模拟分析[J].防灾减灾工程学报,2017, 37(4):532-539. Hao Y H, Kong G Q, Peng H F, et al. Analysis of thermo-mechanical behavior of single pile influenced by pile tip constraint[J]. Journalof Disaster Prevention and Mitigation Engineering,2017, 37(4):532-539.(in Chinese)

相似文献/References:

[1]黄旭,孔纲强,刘汉龙,等.夏季制冷循环下PCC能量桩负摩阻力特性研究[J].防灾减灾工程学报,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
 HUANG Xu,KONG Gangqiang,LIU Hanlong,et al.Negative Skin Friction Behavior of PCC EnergyPile under Heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
[2]费康,洪伟,钱建,等.循环温度作用下砂土地基能量桩的长期工作特性[J].防灾减灾工程学报,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
 FEI Kang,HONG Wei,QIAN Jian,et al.Long-term Performance of Energy Piles Subjected to Cyclic Thermal Loading in Sand[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
[3]郝耀虎,孔纲强,彭怀风,等.桩端约束对桩身热力学特性影响的模拟分析[J].防灾减灾工程学报,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
 HAO Yaohu,KONG Gangqiang,PENG Huaifeng,et al.Analysis of Thermo-mechanical Behavior of Single Pile Influenced by Pile Tip Constraint[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
[4]赵刚,李驰,斯日古楞.温度循环下桩土界面特性及桩侧摩阻力数值模拟[J].防灾减灾工程学报,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
 ZHAO Gang,LI Chi,Siriguleng.Friction Characteristics of Pile-soil Interface under Temperature Cycles and Numerical Simulation of Shaft Resistance[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
[5]罗 喆,胡 彪.基于热力荷载传递原理的能量桩长期响应研究[J].防灾减灾工程学报,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
 LUO Zhe,HU Biao.Long-term Response of Energy Pile based on Thermo- mechanical Load-transfer Principle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):549.[doi:10.13409/j.cnki.jdpme.2019.04.002]
[6]陈 智,高华雨,肖衡林,等.温度荷载作用下灌注型能量桩热力响应 原位试验研究[J].防灾减灾工程学报,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
 CHEN Zhi,GAO Huayu,XIAO Henglin,et al.In-situ Thermo-mechanical Response Test of Perfusion Energy Pile under Temperature Loading[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
[7]闫振国,张正威,杨 军.考虑桩身热容的能量桩传热性能分析[J].防灾减灾工程学报,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
 YAN Zhenguo,ZHANG Zhengwei,YANG Jun.Analysis of Heat Transfer Performance of Energy Pile Considering Heat Capacity of Pile Body[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
[8]张培龙,裴华富,宋怀博,等.基于改进G-函数的能量桩结构可靠性设计[J].防灾减灾工程学报,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
 ZHANG Peilong,PEI Huafu,SONG Huaibo,et al.Reliability Design of Energy Pile Structure based on Improvement of G-functions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
[9]徐 健,任连伟,马 艳,等.冬季工况下微型钢管桩热力响应特性数值分析[J].防灾减灾工程学报,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]
 XU Jian,REN Lianwei,MA Yan,et al.Numerical Analysis on Thermodynamic Response Characteristics of Micro Steel Piles under Winter Conditions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]
[10]白丽丽,裴华富,宋怀博,等.相变能量桩段模型传热模拟[J].防灾减灾工程学报,2019,39(04):684.[doi:10.13409/j.cnki.jdpme.2019.04.021]
 BAI Lili,PEI Huafu,SONG Huaibo,et al.Heat Transfer Simulation of Phase Change Energy Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):684.[doi:10.13409/j.cnki.jdpme.2019.04.021]
[11]杨涛,花永盛,刘律智.悬浮能量桩热-力学基本特性的数值模拟[J].防灾减灾工程学报,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
 YANG Tao,HUA Yongsheng,LIU Lyuzhi.Numerical Simulation of Basic Thermo-mechanical Behavior of a Floating Energy Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]

备注/Memo

备注/Memo:
收稿日期:2019-01-27; 修回日期:2019-04-11 基金项目:上海理工大学沪江基金项目(D14003)资助 作者简介:杨 涛(1962-),男,教授,博士。主要从事地基加固技术与理论研究。Email:shyangtao@163.com
更新日期/Last Update: 2019-09-15