[1]戴国亮,曹小林,龚维明.压缩空气下FRPC能源桩承载特性分析[J].防灾减灾工程学报,2019,39(04):579-584591.[doi:10.13409/j.cnki.jdpme.2019.04.006]
 DAI Guoliang,CAO Xiaolin,GONG Weiming.Analysis of Bearing Capacity of FRPC Pipe as Energy Storage Medium under the Action of Compressed Air[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):579-584591.[doi:10.13409/j.cnki.jdpme.2019.04.006]
点击复制

压缩空气下FRPC能源桩承载特性分析()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
579-584591
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Analysis of Bearing Capacity of FRPC Pipe as Energy Storage Medium under the Action of Compressed Air
文章编号:
1672-2132(2019)04-0579-06
作者:
戴国亮12 曹小林12 龚维明12
(1.东南大学混凝土及预应力混凝土教育部重点实验室, 江苏 南京 211189; 2.东南大学土木工程学院, 江苏 南京 211189)
Author(s):
DAI Guoliang12 CAO Xiaolin12 GONG Weiming12
(1.Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing 211189, China; 2.School of Civil Engineering,Southeast University, Nanjing 211189, China)
关键词:
可再生能源存储 FRPC管桩 CAES桩 承载特性
Keywords:
renewable energy storage FRPC pipe pile CAES pile bearing characteristics
分类号:
TU443
DOI:
10.13409/j.cnki.jdpme.2019.04.006
文献标志码:
A
摘要:
可再生能源储存系统是利用钢筋混凝土桩基础来储存由太阳能板产生的可再生能源,可再生能源以压缩空气的形式储存在空心截面的桩基内,桩基础作为上部结构的承载结构,不仅要承受上部结构荷载,还要承受土体的反作用力和压缩空气的压力。然而,混凝土在拉应力作用下易产生裂缝,导致钢筋混凝土桩储存能源的使用性能和耐久性受限。为了克服传统钢筋混凝土能量桩的这些缺陷,针对各种FRP(Fiber Reinforced Polymer)-混凝土复合桩基础储能和承载的双功能进行研究。综合考虑结构荷载、土体的反作用和压缩空气热动力循环引起的内部空气压力的共同作用,对多种形式的复合能量桩基础体系的适用性进行了综合有限元分析。研究表明,内侧和外侧的FRP管可以有效提高使用性能和耐久性,相对于钢筋混凝土桩,FRPC管桩的使用可靠性和耐久性性能更高。
Abstract:
Renewable energy storage system uses reinforced concrete pile foundation to store renewable energy generated by solar panels. The renewable energy is stored in the hollow section of pile foundation in the form of compressed air. The pile foundation, acting as a load-bearing structure of the upper structure, sustains not only the upper structure load, but also the soil reaction force and the compressed air pressure. However, concrete is prone to cracking under tensile stress, which leads to the limitation of energy storage performance and durability of reinforced concrete piles. In order to overcome these defects of traditional reinforced concrete energy piles, this paper studies the dual functions of various FRP(Fiber Reinforced Polymer)-concrete composite pile foundations as energy storage and load bearing structures. Considering the combined action of structural load, soil reaction and internal air pressure caused by compressed air thermodynamic circulation, the applicability of multiple forms of composite energy pile foundation system is analyzed by the finite element method. The study shows that the inner and outer FRP pipes can effectively improve the service performance and durability of piles, and the service reliability and durability of FRPC pipe piles are improved compared with that of reinforced concrete piles.

参考文献/References:

[1] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2013, 36(1): 176-181. Liu H L, Kong G Q, Ng C W W. Application research progress of energy pile engineering and development of PCC technology [J]. Journal of Geotechnical Engineering, 2013, 36(1):176-181.(in Chinese)
[2] 杨 涛,花永盛,刘律智.悬浮能量桩热-力学基本特性的数值模拟[J].防灾减灾工程学报,2017,37(4):518-524,597. Yang T, Hua Y Sh, Liu L Zh. Numerical simulation of thermal and mechanical properties of suspended energy pile [J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):518-524,597.(in Chinese)
[3] 郝耀虎,孔纲强,彭怀风,等.桩端约束对桩身热力学特性影响的模拟分析[J].防灾减灾工程学报,2017,37(4):532-539. Hao Y H, Kong G Q, Peng H F, et al. Simulation analysis of the impact of pile end constraints on pile thermodynamic characteristics [J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(4):532-539.(in Chinese)
[4] 孔纲强,王成龙,刘汉龙,等.多次温度循环对能量桩桩顶位移影响分析[J].岩土力学,2017,38(4):958-964. Kong G Q, Wang Ch L, Liu H L, et al. Analysis of the influence of multiple temperature cycles on pile top displacement of energy pile [J]. Rock and Soil Mechanics, 2017,38(4):958-964.(in Chinese)
[5] 陈 龙,陈永辉,李 行,等.冷水循环作用对半埋管能源桩承载特性影响试验研究[J].防灾减灾工程学报,2017,37(4):551-556. Chen L, Chen Y H, Li X, et al. Experimental study on the influence of cold water circulation on bearing characteristics of semi-buried pipe energy pile [J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):551-556.(in Chinese)
[6] 陈 乐,王尔觉,郭易木,等.竖直埋管及桩基内埋管换热器传热模型研究进展[J].防灾减灾工程学报,2017,37(4):557-564. Chen L, Wang E J, Guo Y M, et al. Research progress on heat transfer model of vertical buried pipe and pile embedded pipe heat exchanger [J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(4):557-564.(in Chinese)
[7] 桩基地热能利用技术标准:JGJ/T438—2018[S]. 北京:中国标准出版社,2018. Technical standard for the utilization of pile foundation geothermal energy:JGJ/T438—2018 [S]. Beijing: China Standard Press, 2018.(in Chinese)
[8] Sabirova A, Zhang D, Kim J, et al. Development of a reinforced concrete foundation system for renewable energy storage[C]∥Challenges and Innovations in Geotechnics—Proceedings of the 8th Asian Young Geotechnical Engineers Conference, Astana, Kazakhstan:[s.n.],2016: 5-7.
[9] Tulebekova S, Saliyev D, Zhang D, et al. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology[C]∥IOP Conference Series Materials Science and Engineering,[s.l.]:IOP Publishing, 2017:1-9.
[10] Yang H, Memon, S A, Bao X, et al.Design and preparation of carbon based composite phase change material for energy piles[J]. Materials,2017,10(4):1-15.
[11] Lund H, Salgi G. The role of compressed air energy storage(CAES)in future sustainable energy systems[J]. Energy Conversion and Management, 2009, 50(5): 1 172-1 179.
[12] Swider D J. Compressed air energy storage in an electricity system with significant wind power generation[J]. IEEE transactions on energy conversion, 2007, 22(1): 95-102.
[13] Succar S, Williams R H. Compressed air energy storage: theory, resources, and applications for wind power[R]. Princeton:Princeton Environmental Institute, 2008, 8.
[14] Budt M, Wolf D, Span R, et al. Compressed air energy storage-an option for medium to large scale electrical-energy storage [J]. Energy Procedia, 2016, 88:698-702.
[15] Zhang D, Kim J, Tulebekova S, et al. Structural responses of reinforced concrete pile foundations subjected to pressures from compressed air for renewable energy storage[J]. International Journal of Concrete Structures and Materials, 2018, 12(1):1-16.
[16] Isaac S, Dan W, Shimshon B. Compressed air energy storage method and system[J]. Applied Thermal Engineering, 1997, 17(3):282-282.
[17] Sen R, Mullins G. Application of FRP composites for underwater piles repair[J]. Composites Part B(Engineering), 2007, 38(5-6):751-758.
[18] Mullins G, Sen R, Suh K, et al. Underwater fiber–reinforced polymers repair of prestressed piles in the allen creek bridge[J]. Journal of Composites for Construction, 2005, 9(2): 136-146.
[19] Mullins G, Sen R, Suh K S, et al. A demonstration of underwater FRP repair[J]. Concrete International, 2006, 28(1): 70-73.
[20] Ashford S A, Jakrapiyanun W. Drivability of glass FRP composite piling[J]. Journal of Composites for Construction, 2001, 5(1): 58-60.
[21] Fam A, Schnerch D, Rizkalla S. Rectangular filament-wound glass fiber reinforced polymer tubes filled with concrete under flexural and axial loading: experimental investigation[J]. Journal of Composites for Construction, 2005, 9(1): 25-33.
[22] 周 康,戴国亮,杨 阳,等.CBF管桩低周反复荷载试验研究[J].东南大学学报(自然科学版),2018,48(3):491-495. Zhou K, Dai G L, Yang Y, et al. Low cyclic and repeated load test of CBF pipe pile [J]. Journal of Southeast University(Natural Science Edition), 2008,48(3):491-495.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-01-31; 修回日期:2019-04-10 基金项目:国家自然科学基金项目(51878160, 51678145, 51808112)资助 作者简介:戴国亮(1975-),男,教授,博导,博士。主要从事桩基础方面的研究。Email:daigl@seu.edu.cn
更新日期/Last Update: 2019-09-15