[1]崔宏志,李宇博,包小华,等.饱和砂土地基相变桩的热力学特性试验研究[J].防灾减灾工程学报,2019,39(04):564-571.[doi:10.13409/j.cnki.jdpme.2019.04.004]
 CUI Hongzhi,LI Yubo,BAO Xiaohua,et al.Investigation on Thermo-mechanical Characteristics of Phase Change Pile in Saturated Sand Foundation by Model Tests[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):564-571.[doi:10.13409/j.cnki.jdpme.2019.04.004]
点击复制

饱和砂土地基相变桩的热力学特性试验研究()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
564-571
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Investigation on Thermo-mechanical Characteristics of Phase Change Pile in Saturated Sand Foundation by Model Tests
文章编号:
1672-2132(2019)04-0564-08
作者:
崔宏志1 李宇博1 包小华1 冯唐杰1 齐 贺2
(1.深圳大学土木工程学院,广东 深圳 518060; 2.中建科技集团有限公司, 广东 深圳 518000)
Author(s):
CUI Hongzhi1 LI Yubo1 BAO Xiaohua1 FENG Tangjie1QI He2
(1.Department of Civil Engineering,ShenZhen University,Shenzhen 518060,China; 2.China Construction Science and Technology Group Co.,Ltd.,Shenzhen 518000, China)
关键词:
相变能源桩 循环温度荷载 饱和砂土 大尺寸模型试验 不均匀热应变
Keywords:
phase change energy pile cyclic temperature load saturated sand large scale model test uneven thermal strain
分类号:
TU473
DOI:
10.13409/j.cnki.jdpme.2019.04.004
文献标志码:
A
摘要:
能源桩是一种新型的能源地下结构,相变材料能够改变自身状态来提供潜热。制作相变混凝土能源桩来实施室内大尺寸模型试验,将直径为0.2 m,长度为1.5 m的相变能源桩放入长宽高分别为2.45 m×2.45 m×2 m的模型箱中,模型箱中为饱和砂土地基。随后对能源桩施加三次循环温度荷载,测量桩体内部以及桩周土体温度的分布,并对相变能源桩的力学特性进行监测和分析,研究了循环温度荷载下相变能源桩的应力应变以及桩顶位移。研究结果表明:① 能源桩在循环温度荷载作用下产生的温度变化会给桩周土体带来一定的温度累积; ② 沿桩身深度方向及桩体内部同一平面内都存在着不均匀的应力应变分布; ③ 桩顶位移随温度循环过程变化,温度循环结束后会产生不可恢复的塑性位移。
Abstract:
Energy pile is a new type of energy underground structure. Phase change material can change its state to provide latent heat. Concrete pile with phase change material was used for a large scale model test. The phase change energy pile with a diameter of 0.2 m and a length of 1.5 m was placed in a model box with a size of 2.45 m×2.45 m×2 m. The box was filled with saturated sand. Then the cyclic temperature load was applied to the energy pile, the temperature inside the pile and of the soil around the pile is measured, and the mechanical properties of the phase change energy pile, including the stress and strain and pile head displacement under cyclic temperature load, are monitored and analyzed, The results show that:(1)The temperature change of energy pile under the cyclic temperature load leads to a certain temperature accumulation in the soil around the pile;(2)Inhomogeneous stress and strain along the depth direction of the pile body and in the same cross section inside the pile body are observed;(3)The displacement of the pile changes during the temperature cycles and produces an unrecoverable plastic displacement at the end of the temperature cycles.

参考文献/References:

[1] 桂树强,程晓辉.能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6):1 087-1 094. Gui Sh Q,Cheng X H. In-situ test for structural response of energy pile to heatexchanging process[J].Chinese Journal of Geotechnical Engineering,2014,36(6):1 087-1 094.(in Chinese)
[2] 桂树强, 程晓辉, 张志鹏. 地源热泵桩基与钻孔埋管换热器换热性能比较[J]. 土木建筑与环境工程, 2013, 35(3):151-156. Gui Sh Q,Cheng X H,Zhang Zh P.Comparative analysis of heat exchange performanceof energy piles and borehole heat exchangers in GSHP system[J].Journal of Civil Architectural & Environment Engineering,2013,35(3):151-156.(in Chinese)
[3] 孔纲强. 能量桩换热管新型埋管方式技术比较分析[J]. 建筑节能, 2014,42(12):104-108. Kong G Q.Comparative analysis of heat exchange tube in energy pilewith variousembedded manners[J].Building Energy Efficency,2014,42(12):104-108.(in Chinese)
[4] 陈 龙, 陈永辉, 李 行,等. 冷水循环作用对半埋管能源桩承载特性影响试验研究[J]. 防灾减灾工程学报, 2017,37(4):551-556. Chen L,Chen Y H,Li X, et al. Study on the bearing capacity of energy pile withhalf buried pipes under cooling cycling[J]. Journal of Disaster Prevention andMitigation Engineering,2017,37(4):551-556.(in Chinese)
[5] Gao J, Zhang X, Liu J. Numerical and experimental assessment of thermal performance of vertical energy piles: An application[J]. Applied Energy,2008,85(10):901-910.
[6] Laloui L, Nuth M, Vulliet L. Experimental and numerical investigationsof the behaviour of a heat exchanger pile[J]. 2006, 30(8):763-781.
[7] Bourne-Webb P J, Amatya B, Soga K. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique,2009,59(3):237-248.
[8] Amatya B L, Soga K, Bourne-Webb P J.Thermo-mechanical behaviour of energy piles[J]. Géotechnique,2012, 62(6):503-519.
[9] 刘汉龙, 王成龙, 孔纲强, 等. U型、W型和螺旋型埋管形式能量桩热力学特性对比模型试验[J]. 岩土力学, 2016,37(增1):441-447. Liu H L,Wang Ch L,Kong G Q,et al. Comparative model test on thermomechanical characteristics of energy pile with U-shaped, W-shaped and spiral-shape[J].Rock and Soil Mechanics, 2016,37(Sup 1):441-447.(in Chinese)
[10] 王成龙, 刘汉龙, 孔纲强, 等. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1):85-91. Wang Ch L,Liu H L,Kong G Q,et al. Model test on thermal mechanical behavior ofenergy piles influenced with heat exchangers types[J].Engineering Mechanics,2017,34(1):85-91.(in Chinese)
[11] 黄 旭,孔纲强, 刘汉龙,等. 夏季制冷循环下PCC能量桩负摩阻力特性研究[J]. 防灾减灾工程学报, 2017,37(4):511-517. Huang X,Kong G Q,Liu H L,et al. Negative skin friction behaviorof pcc energypile under heating cycle[J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(4):511-517.(in Chinese)
[12] 方鹏飞, Abdelmalek B, Wang B, 等. 温度对地热能源桩承载性状的影响[J]. 防灾减灾工程学报, 2017,37(4):540-545. Fang P F,Abdelmalek B,Wang B,et al. Influence of thermal loading on bearing capacity of geothermal energy piles[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(4):540-545.(in Chinese)
[13] Ng C W W, Gunawan A, Shi C. Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand: A comparative study[J].Géotechnique Letters,2016, 6(1):1-5.
[14] Ng C W W, Shi C, Laloui L.Centrifuge modelling of energy pilessubjectedto heating and cooling cycles in clay[J]. Géotechnique Letters,2014, 4(4):310-316.
[15] Stewart M A, Mccartney J S. Centrifuge modeling of soil-structure interaction in energy foundations[J].Journal of Geotechnical & Geoenvironmental Engineering,2014, 140(4):04013044-1-11.
[16] Kalanditou A, Tang A M, Pereira J M.Preliminary study on the mechanicalbehaviour of heat exchanger pile in physical model[J]. Géotechnique,2012,62(11):1 047-1 051.
[17] Yavari N, Tang A M, Pereira J M. Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling[J]. Acta Geotechnica,2014, 9(3):385-398.
[18] Yang W, Lu P, Chen Y. Laboratory investigations of the thermalperformance of an energy pile with spiral coil ground heat exchanger[J]. Energy & Buildings, 2016, 128:491-502.
[19] Caulk R, Ghazanfari E, Mccartney J S. Parameterization of a calibrated geothermal energy pile model[J]. Geomechanics for Energy and the Environment, 2016, 5:1-15.
[20] 土工试验方法标准:GB/T50123—1999 [S].北京:国家质量技术监督局,1999. Standard for soil test method:GB/T50123—1999 [S].Beijing:StateBureau of Quality and Technical Supervision,1999.(in Chinese)
[21] Parkin A K, Lunne T. Boundary effects in the laboratory calibration of acone penetrometer for sand[J].Norwegian Geotechnical Institute Publication,1982(2):761-768.
[22] Olgun C G, Ozudogru T Y, Abdelaziz S L, et al. Long-term performance of heat exchanger piles[J]. Acta Geotechnica, 2015, 10(5):553-569.

备注/Memo

备注/Memo:
收稿日期:2019-03-02; 修回日期:2019-04-04 基金项目:国家自然科学基金项目(51678369,51608385)、深圳市科技创新计划项目(JCYJ20170302143610976)资助 作者简介:崔宏志(1974-),男,教授,博导,博士。主要从事高性能混凝土和能源地下结构方面的研究工作。 Email:h.z.cai@szu.edu.cn
更新日期/Last Update: 2019-09-15