[1]罗 喆,胡 彪.基于热力荷载传递原理的能量桩长期响应研究[J].防灾减灾工程学报,2019,39(04):549-555563.[doi:10.13409/j.cnki.jdpme.2019.04.002]
 LUO Zhe,HU Biao.Long-term Response of Energy Pile based on Thermo- mechanical Load-transfer Principle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):549-555563.[doi:10.13409/j.cnki.jdpme.2019.04.002]
点击复制

基于热力荷载传递原理的能量桩长期响应研究()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
549-555563
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Long-term Response of Energy Pile based on Thermo- mechanical Load-transfer Principle
文章编号:
1672-2132(2019)04-0549-07
作者:
罗 喆12 胡 彪12
(1. 同济大学上海市轨道交通结构耐久与系统安全重点实验室,上海 201804; 2.同济大学道路与交通工程教育部重点实验室,上海 201804)
Author(s):
LUO Zhe12 HU Biao12
(1.Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China; 2. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804,China)
关键词:
能量桩 荷载传递 循环加卸载 长期响应
Keywords:
energy pile load transfer cycle loading and unloading long-termresponse
分类号:
TU443
DOI:
10.13409/j.cnki.jdpme.2019.04.002
文献标志码:
A
摘要:
为研究能量桩的长期工作特性,通过引入Masing准则来建立桩-土荷载传递循环加卸载曲线,进而基于热力荷载传递原理来模拟循环温变荷载作用下能量桩的响应,然后基于现场原位试验,验证模型的可行性,最后研究不同冷热循环方式和桩顶荷载水平对能量桩长期响应的影响。研究结果表明:①循环温变荷载作用会使能量桩桩顶沉降和桩顶轴力不断增大,并最终趋于稳定; ②相较于只提供制冷需求的能量桩循环方式,同时提供制冷制热需求的能量桩更容易引起桩顶残余沉降和残余温度应力的持续积累; ③相较于桩顶轴力增量,建筑荷载的增大更容易引起桩顶残余沉降的积累。
Abstract:
In order to study the long-term performance of energy piles, Masing rule was applied to build the pile-soil load-transfer cyclic curves under loading and unloading. Based on the thermo-mechanical load-transfer principle, the pile response under cyclic loads of temperature change was further simulated. Then, the proposed model was validated through a full scale test of energy pile. Finally, the effect of thermal cycle modes and building loads on the long-term response of energy pile was investigated. The results show that:(1)the cyclic thermal loads lead to an increasing settlement as well as a rising axial force at pile top, which eventually stabilize.(2)compared with the cycle mode of energy piles that only provide the refrigeration demand, energy piles that provide both the cooling and heating requirements could result in more residual settlement and larger residual temperature stress at pile top.(3)compared with the axial force increment at the pile top, a larger building load is more likely to cause the accumulation of residual settlement at the top of the pile.

参考文献/References:

[1] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1):176-181. Liu H L, Kong G Q, Ng C W W. Applications of energy piles and technical development ofPCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181.(in Chinese)
[2] Laloui L, Nuth M, Vulliet L. Experimental and numerical investigations ofthe behaviour of a heat exchanger pile[J]. International Journal for Numericaland Analytical Methods in Geomechanics, 2006, 30(8): 763-781.(in Chinese)
[3] Bourne-Webb P J, Amatya B, Soga K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248.
[4] Ng C W W, Shi C, Gunawan A, et al. Centrifuge modelling of heating effectson energy pile performance in saturated sand[J]. Canadian Geotechnical Journal, 2014, 52(8): 1 045-1 057.
[5] Stewart M A, McCartney J S. Centrifuge modeling of soil-structure interaction in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(4): 4013044.
[6] Knellwolf C, Peron H, Laloui L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890-902.
[7] Loria A F R, Laloui L. The interaction factor method for energy pile groups[J]. Computers and Geotechnics, 2016, 80: 121-137.
[8] Faizal M, Bouazza A, Haberfield C, et al. Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(10): 4018072.
[9] Kalantidou A, Tang A M, Pereira J M, et al. Preliminary study on the mechanical behaviour of heat exchanger pile in physical model[J]. Géotechnique, 2012, 62(11): 1 047-1 051.
[10] 黄 旭, 孔纲强, 刘汉龙, 等. 夏季制冷循环下 PCC 能量桩负摩阻力特性研究[J]. 防灾减灾工程学报, 2017, 37(4): 511-517. Huang X, Kong G Q, Liu H L, et al. Negative skin friction behaviorof PCC energypile under heating cycle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4): 511-517.(in Chinese)
[11] 赵 刚, 李 驰,斯日古楞. 温度循环下桩土界面特性及桩侧摩阻力数值模拟[J]. 防灾减灾工程学报, 2017,37(4): 546-550. Zhao G, Li Ch, Siriguleng. Friction characteristics of pile-soilinterface undertemperature cycles and numerical simulation of shaft resistance[J]. Journal ofDisaster Prevention and Mitigation Engineering, 2017,37(4): 546-550.(in Chinese)
[12] 孔纲强, 王成龙, 刘汉龙, 等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 958-964. Kong G Q,Wang Ch L,Liu H L,et al. Analysis of pile head displacement of energypile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38(4): 958-964.(in Chinese)
[13] 费 康, 洪 伟, 钱 建, 等. 循环温度作用下砂土地基能量桩的长期工作特性[J]. 防灾减灾工程学报, 2017,37(4):525-531. Fei K, Hong W, Qian J, et al. Long-term performance of energy piles subjected tocyclic thermal loading in sand[J]. Journal of Disaster Prevention andMitigation Engineering, 2017, 37(4): 525-531.(in Chinese)
[14] Pasten C, Santamarina J C. Thermally induced long-term displacement of thermoactive piles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2014, 140(5): 6014003.
[15] Suryatriyastuti M E, Mroueh H, Burlon S. A load transfer approach for studying the cyclic behavior of thermo-active piles[J]. Computers and Geotechnics, 2014, 55: 378-391.
[16] 郭浩然, 乔 兰, 李 远. 能源桩与周围土体之间荷载传递模型的改进及其桩身承载特性研究[J]. 岩土力学, 2018, 39(11):134-144. Guo H R, Qiao L, Li Y. Research on the bearing performance of energy piles usingan improved load-transfer model on pile-soil interface[J]. Rock and Soil Mechanics, 2018, 39(11):134-144.(in Chinese)
[17] 费 康,戴 迪,洪 伟.能量桩单桩工作特性简化分析方法[J].岩土力学, 2019, 40(1):70-80,90. Fei K, Dai D, Hong W. A simplified method for working performanceanalysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1):70-80,90.(in Chinese)
[18] Sutman M, Olgun C G, Laloui L. Cyclic load-transfer approach for the analysis of energy piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 145(1): 4018101.
[19] Frank R. Estimation par les paramètres pressiomé-triques delenfoncement sous charge axiale de pieux forés dans des sols fins[J]. Bull liaison Lab Ponts Chauss, 1982,119:17-24.(in French)
[20] Chin J T, Poulus H G. A “TZ” approach for cyclic axial loading analysisof single piles[J]. Computers and Geotechnics, 1991, 12(4): 289-320.
[21] Mimouni T. Thermomechanical characterization of energy geostructures withemphasis on energy piles[R]. Lausanne, Switzerland: cole PolytechniqueFédérale de Lausanne, 2014.

相似文献/References:

[1]黄旭,孔纲强,刘汉龙,等.夏季制冷循环下PCC能量桩负摩阻力特性研究[J].防灾减灾工程学报,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
 HUANG Xu,KONG Gangqiang,LIU Hanlong,et al.Negative Skin Friction Behavior of PCC EnergyPile under Heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):511.[doi:10.13409/j.cnki.jdpme.2017.04.001]
[2]杨涛,花永盛,刘律智.悬浮能量桩热-力学基本特性的数值模拟[J].防灾减灾工程学报,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
 YANG Tao,HUA Yongsheng,LIU Lyuzhi.Numerical Simulation of Basic Thermo-mechanical Behavior of a Floating Energy Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):518.[doi:10.13409/j.cnki.jdpme.2017.04.002]
[3]费康,洪伟,钱建,等.循环温度作用下砂土地基能量桩的长期工作特性[J].防灾减灾工程学报,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
 FEI Kang,HONG Wei,QIAN Jian,et al.Long-term Performance of Energy Piles Subjected to Cyclic Thermal Loading in Sand[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):525.[doi:10.13409/j.cnki.jdpme.2017.04.003]
[4]郝耀虎,孔纲强,彭怀风,等.桩端约束对桩身热力学特性影响的模拟分析[J].防灾减灾工程学报,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
 HAO Yaohu,KONG Gangqiang,PENG Huaifeng,et al.Analysis of Thermo-mechanical Behavior of Single Pile Influenced by Pile Tip Constraint[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):532.[doi:10.13409/j.cnki.jdpme.2017.04.004]
[5]赵刚,李驰,斯日古楞.温度循环下桩土界面特性及桩侧摩阻力数值模拟[J].防灾减灾工程学报,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
 ZHAO Gang,LI Chi,Siriguleng.Friction Characteristics of Pile-soil Interface under Temperature Cycles and Numerical Simulation of Shaft Resistance[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):546.[doi:10.13409/j.cnki.jdpme.2017.04.006]
[6]杨 涛,刘律智,花永盛.冷-热循环下能量桩热-力学特性的数值模拟[J].防灾减灾工程学报,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
 YANG Tao,LIU Lyuzhi,HUA Yongsheng.Numerical Simulation of Thermo-mechanical Behavior of Energy Pile Subjected to Cooling-heating Cycle[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):585.[doi:10.13409/j.cnki.jdpme.2019.04.007]
[7]陈 智,高华雨,肖衡林,等.温度荷载作用下灌注型能量桩热力响应 原位试验研究[J].防灾减灾工程学报,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
 CHEN Zhi,GAO Huayu,XIAO Henglin,et al.In-situ Thermo-mechanical Response Test of Perfusion Energy Pile under Temperature Loading[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):592.[doi:10.13409/j.cnki.jdpme.2019.04.008]
[8]闫振国,张正威,杨 军.考虑桩身热容的能量桩传热性能分析[J].防灾减灾工程学报,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
 YAN Zhenguo,ZHANG Zhengwei,YANG Jun.Analysis of Heat Transfer Performance of Energy Pile Considering Heat Capacity of Pile Body[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):599.[doi:10.13409/j.cnki.jdpme.2019.04.009]
[9]张培龙,裴华富,宋怀博,等.基于改进G-函数的能量桩结构可靠性设计[J].防灾减灾工程学报,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
 ZHANG Peilong,PEI Huafu,SONG Huaibo,et al.Reliability Design of Energy Pile Structure based on Improvement of G-functions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):636.[doi:10.13409/j.cnki.jdpme.2019.04.014]
[10]徐 健,任连伟,马 艳,等.冬季工况下微型钢管桩热力响应特性数值分析[J].防灾减灾工程学报,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]
 XU Jian,REN Lianwei,MA Yan,et al.Numerical Analysis on Thermodynamic Response Characteristics of Micro Steel Piles under Winter Conditions[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):665.[doi:10.13409/j.cnki.jdpme.2019.04.018]

备注/Memo

备注/Memo:
收稿日期:2019-03-12; 修回日期:2019-04-13 基金项目:国家自然科学基金项目(41702296)资助 作者简介:罗 喆(1982-),男,教授,博导,博士。主要从事岩土工程可靠度设计与分析。Email:zluo@tongji.edu.cn
更新日期/Last Update: 2019-09-15