[1]费 康,付长郓,戴 迪,等.循环温度荷载作用下饱和黏土的体积变形特性[J].防灾减灾工程学报,2019,39(04):541-548.[doi:10.13409/j.cnki.jdpme.2019.04.001]
 FEI Kang,FU Changyun,DAI Di,et al.Volume Deformation Behavior of Saturated Clay under Thermal Cycles[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):541-548.[doi:10.13409/j.cnki.jdpme.2019.04.001]
点击复制

循环温度荷载作用下饱和黏土的体积变形特性()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
541-548
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Volume Deformation Behavior of Saturated Clay under Thermal Cycles
文章编号:
1672-2132(2019)04-0541-08
作者:
费 康 付长郓 戴 迪 周 莹
(扬州大学岩土工程研究所,江苏 扬州 225127)
Author(s):
FEI Kang FU Changyun DAI Di ZHOU Ying
(Institute of Geotechnical Engineering, Yangzhou University, Yangzhou225127, China)
关键词:
黏土 室内试验 温度循环 塑性体积应变 广义塑性模型
Keywords:
clay laboratory test thermal cycles plastic volumetric strain generalized plasticity model
分类号:
TU443
DOI:
10.13409/j.cnki.jdpme.2019.04.001
文献标志码:
A
摘要:
采用温控三轴仪,研究了排水条件下温度循环引起的饱和黏土体积变化特性。试验结果表明,温度循环会使得土体产生不可恢复的体积变形,塑性体积应变的大小随温度循环周数的增加而增加,并逐渐趋于稳定值; 若将经历过温度循环的土样重新加载到新的正常固结状态,后续温度循环中产生的塑性体积应变量值及发展规律与初始循环下的类似; 同等温度增量下,体积应变的大小主要受超固结比OCR的影响,与应力水平无关。OCR越大,体积应变越小,随温度循环周数稳定的也越快。基于广义塑性理论,给出了热-力耦合作用下土体体积应变的计算模型。模型中考虑了温度塑性应变对屈服应力的硬化作用,根据屈服应力与前期固结应力之间的差异间接体现温度历史的影响,进而合理地模拟体积应变随温度循环周数的累积规律。利用所建立的模型对本文试验和文献中的数据进行了模拟,验证了模型的可靠性。
Abstract:
In this study, a temperature-controlled triaxial apparatus was used to investigate the volume deformation behavior of saturated clay subjected to thermal cycles in drained conditions. It was found that the thermally induced plastic volumetric strain accumulated with the number of thermal cycles and then leveled off. When the specimens after thermal cycles were loaded to a normal consolidation state again, the subsequent temperature change can still lead to irreversible volume changes. The magnitude and the trend of the volumetric strains were similar to those under the initial thermal cycles. The thermally induced volumetric strain was mainly influenced by the overconsolidation ratio(OCR)and was irrelevant to the value of the stress level. At higher OCRs, the thermally induced volumetric strain was small, and the strain accumulation rate was high. On the basis of the generalized plasticity theory, a constitutive model was proposed to model the volume deformation behavior of saturated clays subjected to thermo-mechanical loads. The hardening effect of the thermally induced volumetric strain on the yield stress was accounted in the model. The effect of the temperature history was considered indirectly by taking into account the difference between the yield stress and the preconsolidation stress. The presented model was validated by comparing the predicted values with the experimental data in this paper and some published literatures.

参考文献/References:

[1] 白 冰, 赵成刚. 温度对粘性土介质力学特性的影响[J]. 岩土力学, 2003, 24(4):533-537. Bai B, Zhao Ch G. Temperature effects on mechanical characteristicsof clay soils [J]. Rock and Soil Mechanics, 2003, 24(4): 533-537.(in Chinese)
[2] Bai B, Shi X. Experimental study on the consolidation of saturated silty clay subjectedto cyclic thermal loading[J]. Geomechanics and Engineering, 2017, 12(4): 707-721.
[3] 陆嘉楠, 徐 洁, 陈永辉. 温度影响粉质黏土固结和强度特性的试验研究[J].防灾减灾工程学报, 2017,37(4):94-99. Lu J N, Xu J, Chen Y H. Experimental study of temperature effects on consolidation and strength properties of silty clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017,37(4):94-99.(in Chinese)
[4] 费 康, 钱 健, 洪 伟, 等. 黏土地基中能量桩力学特性数值分析[J]. 岩土力学, 2018, 39(7): 2 651-2 661. Fei K, Qian J, Hong W, et al. Numerical analysis of the mechanical behavior of energy piles in clay [J]. Rockand Soil Mechanics, 2018, 39(7): 2 651-2 661.(in Chinese)
[5] 孔纲强, 王成龙, 刘汉龙, 等.多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 958-964. Kong G Q, Wang Ch L, Liu H L, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38(4): 958-964.(in Chinese)
[6] Sultan N, Delage P, Cui Y J. Temperatureeffects on the volume change behaviour of Boom clay [J]. Engineering Geology,2002, 64(2/3): 135-145.
[7] Cekerevac C, Laloui L. Experimental study of thermal effects on the mechanical behaviour of a clay [J]. International Journalfor Numerical and Analytical Methods in Geomechanics, 2004, 28(3): 209-228.
[8] Abuel-Naga H M, Bergado D T, Bouazza A, et al. Volume change behaviour ofsaturated clays under drained heating conditions: experimental results and constitutive modeling [J]. Canadian Geotechnical Journal, 2007, 44(8): 942-956.
[9] Tidfors M, Sällfors G. Temperature effect on preconsolidation pressure [J]. Geotechnical Testing Journal, 1989, 12(1): 93-97.
[10] Abuel-Naga H M, Bergado D T, Ramana G V, et al. Experimental evaluation of engineering behavior ofsoft Bangkok clay under elevated temperature [J]. Journal of Geotechnical andGeoenvironmental Engineering, 2006, 132(7): 902-910.
[11] Abuel-Naga H M, Bergado D T, Bouazza A, et al. Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling [J].Canadian Geotechnical Journal, 2007, 44(8): 942-956.
[12] Hueckel T, Borsetto M. Thermoplasticity of saturated soils and shales: constitutive equations [J]. Journal of Geotechnical Engineering, 1990, 116(12): 1 765-1 777.
[13] CuiY J, Sultan N, Delage P. A thermomechanical model for saturated clays [J]. Canadian Geotechnical Journal, 2000, 37(3): 607-620.
[14] Laloui L, François B.ACMEG-T: soil thermoplasticity model [J]. Journal of Engineering Mechanics,2009, 135(9): 932-944.
[15] 姚仰平, 杨一帆, 牛 雷. 考虑温度影响的UH模型[J].中国科学: 技术科学, 2011, 41(2): 158-169. Yao Y P, Yang Y F, Niu L.UH model considering temperature effects [J]. Science China: Technological Sciences, 2011, 41(2): 158-169.(in Chinese)
[16] Zhou C, Ng C W W. A thermomechanical model for saturated soil at small and large strains [J]. Canadian Geotechnical Journal, 2015, 52(8): 1 101-1 110.
[17] Campanella R G, Mitchell J K. Influenceof temperature variations on soil behavior [J]. Journal of the Soil Mechanicsand Foundations Division, 1968, 94(3): 709-734.
[18] Di Donna A, Laloui L. Response of soil subjected to thermal cyclic loading: experimental and constitutive study [J]. Engineering Geology, 2015, 190: 65-76.
[19] Vega A, McCartney J S. Cyclic heating effects on thermal volume change of silt [J]. Environmental Geotechnics, 2014, 2(5): 257-268.
[20] Zhou C, Fong K Y, Ng C W W. A newbounding surface model for thermal cyclic behavior [J]. International Journalfor Numerical and Analytical Methods in Geomechanics, 2017, 41(16): 1 656-1 666.
[21] Cekerevac C, Laloui L, Vulliet L. A novel triaxial apparatus for thermo-mechanical testing of soils [J]. Geotechnical Testing Journal, 2005, 28(2):161-170.
[22] Hong P Y, Pereira J M, Tang A M, et al. On some advanced thermo-mechanical models for saturated clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2 952-2 971.
[23] Zienkiewicz O C, Mroz Z. Generalized plasticity formulation and applications to geomechanics[J]. Mechanics of Engineering Materials, 1984, 44(3): 655-680.
[24] Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity andthe modelling of soil behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190.
[25] Manzanal D, Pastor M, Merodo J A F. Generalized plasticity state parameter-based model for saturated andunsaturated soils. part ii: unsaturated soil modeling [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(18): 1 899-1917.
[26] Laloui L, Cekerevac C. Thermo-plasticity of clays: an isotropic yield mechanism [J]. Computers and Geotechnics, 2003, 30(8): 649-660.
[27] Baldi G, Hueckel T, Peano A. Developments in modelling of thermo-hydro-mechanicalbehaviour of Boom clay and clay-based buffer materials[R]. Luxembourg: Commission of the European Communities, 1991.

相似文献/References:

[1]胡文静,丁瑜,夏振尧,等.重庆地区红层泥岩侧限膨胀性能试验研究[J].防灾减灾工程学报,2015,35(05):607.
 HU Wenjing,DING Yu,XIA Zhenyao,et al.Experimental Study on Confined Swelling Characteristic of Redbed Mudstone in Chongqing[J].Journal of Disaster Prevention and Mitigation Engineering,2015,35(04):607.
[2]王永洪,张明义,白晓宇,等.不同含水率状态下黏性土-混凝土界面剪切特性室内试验研究[J].防灾减灾工程学报,2018,38(01):118.[doi:10.13409/j.cnki.jdpme.2018.01.016]
 WANG Yonghong,ZHANG Mingyi,Bai Xiaoyu,et al.Laboratory Experimental Study on Shear Behavior of Clayey Soil-concrete Interface under Different Moisture Conditions[J].Journal of Disaster Prevention and Mitigation Engineering,2018,38(04):118.[doi:10.13409/j.cnki.jdpme.2018.01.016]
[3]鞠兴华,杨晓华,张莎莎.水泥粉煤灰建筑垃圾桩处理软土地基试验研究[J].防灾减灾工程学报,2018,38(04):723.[doi:10.13409/j.cnki.jdpme.2018.04.017]
 JU Xinghua,YANG Xiaohua,ZHANG Shasha.Experimental Study on Soft Soil Foundation Improved by Cement Fly-ash Construction Waste Pile[J].Journal of Disaster Prevention and Mitigation Engineering,2018,38(04):723.[doi:10.13409/j.cnki.jdpme.2018.04.017]

备注/Memo

备注/Memo:
收稿日期:2019-03-02; 修回日期:2019-04-09 基金项目:国家自然科学基金项目(51778557)、江苏省“青蓝工程”(苏教师[2016]15号)、扬州大学研究生科研创新计划项目(XKYCX18062)资助 作者简介:费康(1978-),男,教授,博导,博士。主要从事地基基础工程方面的研究。Email:kfei@yzu.edu.cn
更新日期/Last Update: 2019-09-15