[1]郭红仙,孟嘉伟,祝振南.能源隧道热响应试验数值分析与适用性评价[J].防灾减灾工程学报,2019,39(04):572-578.[doi:10.13409/j.cnki.jdpme.2019.04.005]
 GUO Hongxian,MENG Jiawei,ZHU Zhennan.Numerical Analysis and Applicability Evaluation of Thermal Response Test in Energy Tunnels[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(04):572-578.[doi:10.13409/j.cnki.jdpme.2019.04.005]
点击复制

能源隧道热响应试验数值分析与适用性评价()
分享到:

防灾减灾工程学报[ISSN:1672-2132/CN:32-1695/P]

卷:
39卷
期数:
2019年04期
页码:
572-578
栏目:
论文
出版日期:
2019-08-31

文章信息/Info

Title:
Numerical Analysis and Applicability Evaluation of Thermal Response Test in Energy Tunnels
文章编号:
1672-2132(2019)04-0572-07
作者:
郭红仙1 孟嘉伟12 祝振南1
(1.清华大学土木工程系,北京 100084; 2.陕西建工集团有限公司,陕西 西安 710003)
Author(s):
GUO Hongxian1 MENG Jiawei12 ZHU Zhennan1
(1.Department of Civil Engineering,Tsinghua University,Beijing 100084,China; 2.Shanxi Construction Engineering Group Corporation Limited,Xi'an 710003,China)
关键词:
能源隧道 地源热泵 数值模拟 热响应测试 相对热效率
Keywords:
energy tunnel ground source heat pump numerical simulation thermal performance test relative thermal efficiency
分类号:
TK 529
DOI:
10.13409/j.cnki.jdpme.2019.04.005
文献标志码:
A
摘要:
以能源桩和能源隧道为代表的能源地下结构是一类节能环保的地下结构形式,能源隧道的理论研究与实际应用还处于起步阶段,相关测试与设计方法还不够成熟。以新八达岭长城站能源隧道试验段为研究背景,利用COMSOL软件对能源隧道热响应试验进行了数值分析与适用性评价,对TPT测试工况进行了数值模拟,经验证与现场实测结果吻合较好; 对线热源传热模型用于能源隧道TRT试验的适用条件与方法做了初步探索,利用相对热效率的概念对模拟结果进行了分析。结果表明,线热源传热模型不能直接用于分析能源隧道TRT试验结果,但是Tf-ln(t)曲线的斜率与模型输入的围岩导热系数线性相关,可定义相对热效率来反映围岩导热系数对隧道埋管换热器换热能力的影响。
Abstract:
Energy geostructure represented by energy piles and energy tunnels is a kind of energy-saving and environmentally-friendly underground structure. The theoretical research and practical application of energy tunnels are still in their beginning period, and the relevant testing and design methods are not mature enough. Taking the test section of the energy tunnel in the New Badaling Great Wall Station as a research background, the author used COMSOL to carry out numerical analysis and applicability evaluation of thermal response test(TRT)in energy tunnel. Thermal performance test(TPT)is also carried out to find agreement with field test results. The model was used to explore the applicable conditions of the line heat source model in tunnel TRT. The simulation results were analyzed by using the concept of relative thermal efficiency(effu). The results show that the line heat source transfer model cannot be directly used to analyze energy tunnel TRT results, but the slope of theTf-lnt curve is linearly related to the input thermal conductivity of the surrounding rock. The relative thermal efficiency can be defined to reflect how thermal conductivity of the surrounding rock will affect the performance of the tube heat exchanger in tunnel.

参考文献/References:

[1] 桂树强,程晓辉.能源桩换热过程中结构响应原位试验研究[J].岩土工程学报,2014,36(6):1 087-1 094. Gui Sh Q, Cheng X H. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014,36(6):1 087-1 094.(in Chinese)
[2] Brandl H. Energy foundations and other thermo-active ground structures[J]. Géotechnique,2006,56(2):81-122.
[3] Barla M, Donna A D, Perino A. Application of energy tunnels to an urban environment[J]. Géothermics, 2016, 61:104-113.
[4]Schneider M.Zur energetischen nutzung von tunnelbauwerken-messungenund numerische berechnungen am beispiel fasanenhoftunnel[D].German:University of Stuttgart,2013.
[5] Morgensen P. Fluid to duct wall heat transfer in duct system heat storage[C]//International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden:[s.n.],1983: 652-657.
[6] Austin III W A. Development of an in situ system for measuring ground thermal properties[D]. Stillwater: Oklahoma State University, 1998.
[7] 夏才初, 张国柱, 孙 猛. 能源地下结构的理论及应用:地下结构内埋管的地源热泵系统[M]. 上海:同济大学出版社, 2015. Xia C Ch, Zhang G Zh, Sun M. Theory and application of undergroundenergy structure: ground source heat pump system for buried pipes in underground structures[M]. Shanghai:Tongji University Press,2015.(in Chinese)
[8] Lee C, Park S, Won J, et al. Evaluation of thermal performance of energytextile installed in Tunnel[J]. Renewable Energy, 2012, 42(5):11-22.
[9] 郭红仙, 李翔宇, 程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015,55(1):14-20,26. Guo H X, Li X Y, Cheng X H. Simulation and applicability of thermal response tests in energy piles[J]. Journal of Tsinghue University(Science and Technology), 2015,55(1):14-20,26.(in Chinese)
[10] 於一明, 刘干斌, 蒋 蓓. 基于非等温管道流动的浅层地热泵有限元分析[J]. 浙江科技学院学报, 2015,27(3):218-224. Yu Y M, Liu G B, Jiang B. Finite element analysis of ground sourceheat pump based on non-isothermal pipe flow[J]. Journal of Zhejiang University of Scienceand Technology, 2015,27(3):218-224.(in Chinese)
[11] 地源热泵系统工程技术规范:GB 50366—2005[S]. 北京: 中国建筑工业出版社, 2009. Technical code for ground-source heat pump system:GB 50366—2005[S]. Beijing: China Architecture & Building Press, 2009.
[12] International Ground Source Heat Pump Association(IGSHPA), Closed-loop/geothermal Heat Pump Systems: Design and Installation Standards[S], Stillwater: IGSHPA, 2007.
[13] American Society of Heating, Refrigerating and Air-Conditioning Engineers(ASHRAE). 2011 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Applications[S]. Atlanta: ASHRAE, 2011.
[14] 李翔宇. 基于试验与数值模拟的桩基埋管地下换热器设计分析[D].北京:清华大学, 2015. Li X Y. Analysis and design method for pile heat exchangers basedon in-situ test and numerical simulation[D].Beijing: Tsinghua University,2015.(in Chinese)

相似文献/References:

[1]马康,程晓辉.能源隧道的温度应力有限元计算[J].防灾减灾工程学报,2017,37(04):571.[doi:10.13409/j.cnki.jdpme.2017.04.010]
 MA Kang,CHENG Xiaohui.Finite Element Calculation of Thermal Stress of Energy Tunnel[J].Journal of Disaster Prevention and Mitigation Engineering,2017,37(04):571.[doi:10.13409/j.cnki.jdpme.2017.04.010]

备注/Memo

备注/Memo:
收稿日期:2019-01-30; 修回日期:2019-04-15 基金项目:中国铁路总公司科技研究开发计划重大课题(2014G004-C)资助 作者简介:郭红仙(1967-),女,副研究员。主要从事岩土工程方面的研究。Email:guohx@ tsinghua.edu.cn
更新日期/Last Update: 2019-09-15